А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Надо было собрать такую модель молекулы, которая объясняла бы имевшийся к тому времени довольно скудный эксперимент. Повесть о пробах и ошибках на этом пути умело чередуется с рассказом о различных путешествиях и встречах автора (как отчетливо видна из этой книги колоссальная катализирующая способность встреч и бесед ученых разных стран, разных профессий и разных наклонностей в развитии науки; до чего узко и близоруко то начальство, которое считает, что сотрудник должен находиться у своего лабораторного стола, не «болтаться» по конференциям и коллоквиумам, создаваемым непрестанно во всех уголках мира).
Но, конечно, главная причина, которая помогла Уотсону создать из описания научного поиска увлекательное литературное произведение, состоит в том, что вместе с автором в книге действуют несколько ярких персонажей, сложные взаимоотношения между которыми имеют самую прямую связь с открытием структуры ДНК. Во-первых, далеко не просты отношения между Криком и Уотсоном, играющими «в шарики», и Морисом Уилкинсом и Розалиндой Франклин – работниками другого научного учреждения, – которые являются обладателями экспериментальных данных по ДНК. Опытные сведения необходимы нашим главным действующим лицам, опыт и только опыт может направить идеи по правильному руслу и помочь выбрать из сотен схем одну правильную. Но авторы эксперимента Морис и Рози сами хотят пожинать труды своих усилий. Не так-то интересно затратить годы труда, чтобы пара жонглеров атомами-шариками заслужила мировое признание.
И другая острая психологическая ситуация под стать авантюрному роману. На другом берегу океана знаменитый Лайнус Полинг также трудится над созданием модели гена. И, казалось бы, преимущество должно быть на его стороне, так как совсем недавно он показал, что работой с атомными моделями можно существенно продвинуться в понимании структуры белков. Англичане не хотят отдать пальму первенства американцам. Итак, идет гонка за Нобелевской премией, ибо ясно, что успех в решении столь значительной задачи будет увенчан самым огромным лавровым венком.
И эти два конфликта не исчерпывают ситуацию. Не гладкими поначалу являются взаимоотношения Крика с директором лаборатории сэром Лоуренсом Брэггом. Внедрение американского юноши в английский круг также требует некоторого приспосабливания.
Науку делают люди, и их склонности и темперамент, стремления и принципы, входят в игру наряду с математическими формулами и физическими приборами. Вот это и удалось показать Уотсону в своей книге.

По заслугам…

Ну а как же насчет роли случая в открытии структуры ДНК? Невелика эта роль. Если еще в открытии Рентгена и Лауэ поклонники «госпожи удачи» выловят несколько незначительных фактов, подчеркивающих роль случайных совпадений, то в исследовании Уотсона и Крика улов будет уж совсем ничтожным. Однако наш сюжет донельзя ярко показывает, что открытие – это не выигрыш автомобиля по лотерее. Действительно, личные достоинства владельца билета в выигрыше никакой роли не играют, это уж точно. Что же касается тех, на чью долю выпало счастье сделать крупное научное открытие, то они по праву заслужили свою славу.
– С этим никто не спорит, – возразит мне читатель. – Но ведь имеются и другие достойные люди. То обстоятельство, что из сотни достойных судьба выбрала именно вот этого одного, – это уже прихоть случая. Почему открытие произошло в Англии и в начале пятидесятых годов? С таким же успехом оно могло произойти в другой стране и в другое время.
Нет, категорически не согласен я с подобным мнением. Открытие структуры гена закономерно. Оно произошло в тот момент, к которому оно созрело, и в том месте, в котором на него обращали внимание. А что касается участников открытия, то их выбор был практически единственным.
Судите сами, время – начало пятидесятых годов, можно ли было за десять лет до этого срока сколько-нибудь серьезно думать, что закономерности в строении вещества могут быть продемонстрированы в масштабе один к ста миллионам с помощью деревянных, металлических или пластмассовых моделек? Конечно, нет. Ведь о плотной упаковке молекул в кристаллах и компактной структуре макромолекулы люди узнали лишь в 1945–1948 годах, и только в самом конце сороковых годов Полинг доказывает эвристичность работы с моделями для сложных биологических систем на примере альфа-спирали белка.
Но этого мало. Вряд ли кто-либо рискнул взяться за возню с шариками и стерженьками, если бы не была видна возможность проверки найденной модели. А ведь только в сороковых годах были получены первые рентгенограммы ДНК; теоретические же расчеты, показывающие возможность нахождения параметров спиралей по рентгенограммам, были начаты лишь за несколько лет до работы Уотсона и Крика.
Так же точно и важнейшие химические находки, позволившие уверенно наметить порядок присоединения различных химических групп, образующих ДНК, были сделаны также в последние десятилетия.
И наконец, лишь к этому времени стала крепнуть уверенность в том, что явления наследственности связаны с молекулой ДНК.
Все эти линии исследований пересеклись только к пятидесятому году. Открытие не могло быть сделано раньше, а интерес к проблеме был настолько значительным, что было бы невероятным также, если бы оно задержалось.
Не случайно, что открытие было сделано в Англии. Именно здесь вполне естественно произошла встреча биолога Уотсона с нужным ему физиком. Но почему этим физиком оказался именно Крик? Прочтите внимательно книгу Уотсона, и вы поймете, что Крик был одним из трех-четырех возможных претендентов на будущую Нобелевскую премию. А может быть, даже и единственный, если поставить вопрос так: кто в это время в Англии проявлял одинаковый интерес к структуре биологических веществ и к теории рентгеноструктурного анализа?
Выходит, что выбор Уотсоном подходящего коллеги был крайне ограниченным.
Ну а почему Уотсон? На этот вопрос, пожалуй, трудно ответить. Ясно лишь одно – к пятидесятым годам неминуемо должен был найтись биолог, удовлетворяющий трем требованиям: талантливость (не стоит определять, что это такое, чтобы не завязнуть в понятиях), интерес к молекулярной природе гена и понимание, что один в поле не воин и что для решения проблем молекулярной биологии надо найти коллегу в стране физиков. Этим требованиям удовлетворял Уотсон. Можно ли по этой причине назвать его баловнем судьбы? Конечно, нет. Своим успехом он обязан своим разуму и нервной системе…
Мы попытались ответить на вопрос, почему структуру гена открыли Уотсон и Крик. Можно попробовать объяснить, почему изобранником судьбы не стал Полинг или кто-нибудь еще.
Как говорилось, Полинг искал ответ на вопрос о структуре гена одновременно с будущими победителями. Мне кажется, что он был слишком самонадеян в этом поиске. Успех с альфа-спиралью в белках заставил его думать, что он сумеет найти ответ, лишь играя с моделями. Полинг не был связан с экспериментаторами, владевшими рентгенограммами нуклеиновых кислот. В теории рентгеноструктурного анализа он не был опытен, а привлечь на помощь кого-либо из знатоков этой теории ему, видимо, не хотелось. За эти предположения профессор Лайнус Полинг, я надеюсь, не будет на меня в обиде. В конце концов это ему комплимент, так как он не сделал этого открытия, конечно, не из-за нехватки таланта.
Так что, просмотрев все возможности, мы приходим к заключению, что открытие структуры гена так же, как, впрочем, и другие научные открытия, произошло тогда, когда оно должно было произойти, и было оно сделано теми людьми, которые больше всего заслуживали благосклонного отношения «госпожи удачи».

Структура гена

Написав название параграфа, я задумался, что делать дальше. Рассказать о структуре ДНК относительно несложно, но ведь у меня иная цель – объяснить читателю, каков атомный механизм формирования наследственных признаков. А посильная ли эта задача? Дорога от структуры ДНК даже к цвету глаз, не говоря уже к складу характера, очень длинная и тернистая. Местами она превращается в тропинку, а то и вовсе прерывается непроходимыми оврагами.
О колоссальных успехах биологической физики за последние десятилетия я хорошо знал и тем не менее решил посоветоваться с узким специалистом, превосходно знающим молекулярную биологию.
– Могу ли я пренебречь некоторыми деталями, неясностями, противоречиями и ограничиться изложением концепции «один ген – один фермент»? – спросил я его.
– Положение не совсем так формулируется, – ответил он. – Сейчас говорят «один ген – одна полипептидная цепь».
– Но можно мне не входить в эти детали? Принцип ведь мало меняется, а нашим читателям, мне думается, интересно знать лишь общую идею.
– Пожалуй, можно, – согласился коллега.
И я решил ограничиться ответом на небольшое число вопросов, которые мне кажутся важнейшими.
Вопрос первый: в каком взаимоотношении находятся ген и молекула ДНК?
Оказывается, ген – это не молекула. Ген – кусочек молекулы. Одна молекула содержит в себе множество генов, расположенных один за другим.
Молекулы ДНК видны в электронный микроскоп и кажутся узенькими длинными палочками. Чтобы правильно представить себе соотношение длинны и ширины этой молекулы, вспомните железнодорожный рельс километровой длины.
Как уже говорилось выше, молекула представляет собой линейный остов, к которому привешены в сумбурном порядке азотистые основания четырех типов: А, Г, Т и Ц.
Так вот, один ген – это участок цепи ДНК, который состоит примерно из полутора тысяч этих оснований. Специфичность гена, то есть то, что этот ген имеет отношение к цвету глаз, а не к форме носа или что он человеческой особи, а не кошки, определяется порядком в расположении А, Г, Т и Ц. Можно сказать, что каждый ген характеризуется на молекулярном языке фразой, состоящей из полутора тысяч букв.
А как определить, где кончается один ген и начинается другой? – спросите вы. Вопрос законный, и на него есть ответ. Так же как в азбуке Морзе, на четырехбуквенном языке азотистых оснований существует символ, соответствующий точке, которая отделяет один ген от другого. Вас может заинтересовать количество генов в одной ДНК.
Считается, что их, вероятно, примерно десять тысяч; и каждая человеческая особь характеризуется десятью тысячами признаков. Но ведь на Земле живет около четырех миллиардов людей, а признаков всего лишь десять тысяч, как же быть с этим несоответствием?
Число разных вариантов генных структур будет необозримо больше, чем четыре миллиарда (4·10 9 ). Действительно, если каждый ген может выступить в двух разновидностях (голубые глаза – карие глаза), то число этих структур будет равно 2 10000 по той же причине, по которой число вариантов распределения «красного» и «черного» в случае пяти рулеточных игр равно 2 32 . Много ли это – два в степени десять тысяч? Порядочно. Так как два в десятой степени равно примерно одной тысяче, то есть десяти в кубе, то 2 10000 будет равно 10 3000 – единица с тремя тысячами нулей. А это число «чуточку» больше четырех миллиардов. Комментарии нужны? Пожалуй, нет.
Теперь надо сказать несколько слов о работе гена и пояснить таинственную формулу «один ген – один фермент».
Какая ткань в организме вырастет из клеток, определяется в первую очередь белковыми молекулами – ферментами, фабрикуемыми генами. Каждый ген создает одну определенную молекулу белка – один фермент. С помощью этого фермента и происходит строительство всего организма. При этом каждый фермент на редкость специализированный работник. Один фермент устанавливает, образно говоря, только стекло форточки, что на кухне, другой ответствен за электрический выключатель в столовой комнате, третий – за левый водопроводный кран. Но как он это делает? К сожалению, ответить на этот вопрос сейчас просто невозможно. Пришлось бы писать другую книгу, более профессиональную и более проблемную. А эту надо кончать. Мне остается сказать лишь несколько общих слов.
Открытие структуры ДНК и механизма репликации гена явилось мощным толчком для развития молекулярной генетики. Множество явлений получило истолкование на молекулярном уровне, ряд фактов был успешно предсказан. Не надо, конечно, представлять себе, что с этим открытием внесена уже достаточная ясность в понимание всех жизненных процессов. Напротив, надо честно признаться, что в этом направлении сделаны лишь первые шаги. Тем не менее важность открытия Уотсона и Крика огромна уже хотя бы потому, что для всех естествоиспытателей стала очевидной справедливость интерпретации жизни на молекулярном уровне и, следовательно, возникла уверенность в принципиальной возможности вмешательства химическими и биохимическими методами в формирование потомства. Когда человечество приступит к этой задаче, грандиозность которой заставляет ежиться, и приступит ли к ее выполнению вообще, сказать трудно. Но в то же время вся история развития науки показывает, что науку не остановишь. А это означает, что, как только будет изучено устройство молекулы ДНК и установлен порядок следования оснований в молекуле конкретной особи (пока что нет такого способа), на повестку дня станет вопрос о подправке структуры молекулы ДНК. Но дальше простирается область предположений. Авторы фантастических романов уже достаточно наэксплуатировали сюжет создания новых животных и нового человека, поэтому не стоит лишать их возможности стяжать новые лавры и самое время поставить точку.

Итак…

Мой гость Александр Саввич сидел в кресле, попыхивал трубкой и наблюдал за тем, как я тружусь. Я правил свою рукопись. Работа шла к концу.
– О чем речь на последних страницах?
– О структуре гена.
– Какое же отношение это имеет к теме книги?
– Я рассказал о случайностях в наследовании признаков. Надо же было показать, как это замечательное явление объясняется атомной структурой живого вещества.
– А по-моему, это задача другой книги.
– Скажи на милость, какой поборник линейности сюжета! Это тебе не детектив.
– Стройная сюжетная линия всегда считалась достоинством любого литературного произведения, – назидательно сказал Александр Саввич.
– Не знаю, где это считалось. Посмотри любой классический роман, и ты увидишь, что сюжет всегда смахивает на ветвистое дерево: есть главная линия, но имеется и множество ответвлений.
– Но если даже и так, то все боковые сюжеты должны служить одной цели.
– Ну что ж, это справедливо. Именно так старался поступать и я.
– Ничего ты не старался. Твоя тема – вероятность.
– Да нет, не совсем так. Моя тема та же, что и в моих предыдущих популярных книгах, – научный метод мышления. Пропаганда этого метода, демонстрация его силы, попытка убедить читателя, что только с помощью этого метода можно трезво оценивать и жизнь общества, и свою собственную судьбу, – в этом я вижу их задачу.
– Позволь, позволь, а название книги?
– Ты не дал мне закончить. Я же не повторяюсь в своих книгах. В этой я решил показать читателю, как работает один важнейший элемент научного мышления – вероятностный подход к событиям. Это ствол дерева. Но если кое-где я уходил в сторону от сюжетной линии, то все же оставался в рамках главной задачи – показа могущества научного метода мышления.
Мой друг молчал. Он листал рукопись, читал некоторые страницы. Я следил за выражением его лица – ведь он один из первых читателей! – стараясь поймать хоть крошечную похвалу.
– Концовка нужна! – сказал Александр Саввич.
– Нужна, – уныло согласился я. – А что писать? Повторить уже сказанное?
– Чего сомневаешься? Можно подумать, что чтение научных диссертаций не является твоей повседневной работой.
– При чем тут…
– Диссертации заканчиваются выводами. Напиши выводы. Твои коллеги будут довольны. Поймут, что хоть ты и пытаешься заняться литературой, но все же свято хранишь привычки научного деятеля.
– Гм… может, и правда попробовать.

Выводы

1. Детальным рассмотрением в книге самых различных примеров, взятых из жизни и науки, показано, что почти всюду приходится сталкиваться со случайными событиями.
2. В ней дано новое (переставлен порядок слов и иначе расставлены знаки препинания) определение понятия случайного события.
3. Ярко показана польза от теории вероятностей для суждения о таких случайных явлениях, как автомобильные катастрофы, смерти и рождения, встречи и расставания. Основная мысль, обсуждаемая здесь, состоит в следующем: по мере увеличения числа повторяющихся случайных событий предсказания общего результата становятся все более достоверными, а при очень большом их числе случайности складываются в незыблемые закономерности. Автор вынужден отметить, что несколько другими словами эта мысль была ранее высказана в других романах, научных очерках и диссертациях.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27