А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


Осторожнее, повременим с таким заключением. Если немного подумать, то станет ясно, что дело обстоит не так уж просто.
В термостате стоит стакан с жидкостью. Ее температура и давление неизменны. Термодинамическое состояние ее в каждое мгновение одно и то же. Кажется, она – само постоянство и покой. Но ведь молекулы этой жидкости совершают свой вечный тепловой танец! Значит, механические состояния молекул, которые образуют эту самую жидкость, меняются каждое мгновение! Значит, постоянство и покой обманчивы и жидкость живет бурной жизнью?!
Раз уж механическое состояние системы молекул, составляющих жидкость, не отражает ее «макроскопического спокойствия», то назовем его иначе: термин – «микросостояние» будет подходящим по смыслу дела. Теперь мы скажем: каждое состояние (макросостояние) осуществляется беспрерывной сменой огромного числа микросостояний.
Представьте себе, что система состоит из трех перенумерованных молекул. Микросостояние системы будем описывать донельзя грубо, а именно, поделим сосуд, в котором носятся эти три молекулы, на три отсека, а что касается скорости, то разобьем их на две группы – до 1 км/сек (малая скорость) и больше 1 км/сек. Каково будет число микросостояний в этом смехотворно простом случае? Считайте, 8 вариантов распределения скоростей и 27 вариантов положений, то есть 27Ч8! = 216 микросостояний для модели газа, упрощенной до смешного!

Нетрудно понять, что в реальных случаях, когда для характеристики системы требуется задать точно месторасположение и скорости миллиарда миллиардов молекул, числа микросостояний, относящиеся к одному макросостоянию, становятся непредставимо большими.
В маленьком газовом баллончике модной зажигалки носятся молекулы газа, который зовется пропаном. Каждое мгновение расположение молекул и их скорости меняются, каждое мгновение – другое микросостояние.
Но хотя число микросостояний огромно, оно все же не бесконечно велико. Физики могут сосчитать число микросостояний в баллончике зажигалки. Так как мне неизвестны технические параметры этой зажигалки, то я могу сообщить лишь порядок интересующей нас величины. Число микросостояний в баллончике записывается 10 17 цифрами!!! Число печатных знаков в книжке, которую вы читаете, меньше миллиона (10 6 ). Значит, чтобы записать интересующее нас число микросостояний, потребовалась бы книга в сто миллиардов раз (10 11 ) более толстая, чем эта.
Надеюсь, что мне удалось поразить ваше воображение, но моя задача не в этом. Цель этого самого трудного параграфа – показать фундаментальную роль теории вероятностей в учении о равновесии тел. К этой цели мы приблизились вплотную, но, чтобы вы отдохнули, мне хочется разрешить себе немного пофилософствовать на тему о трудности популярного изложения научных истин.
В какой бы форме нам ни преподносилось научно-популярное сочинение, оно всегда будет представлять собой рассказ о научных фактах и идеях.
Разговор может идти в двух тональностях. Первая возникает тогда, когда автор ставит перед собой задачу дать ответ на вопросы «как?»; вторая – в тех случаях, когда предстоит ответить на вопросы «почему?».
Различие между этими двумя вариантами изложения научных истин велико. В первом – задача литератора состоит в том, чтобы вести неторопливый рассказ, не забыть важные детали, заботиться об образности изложения, прибегать к повторениям, заставляя этим читателя держать перед глазами всю картину события. Нет проблемы такой степени сложности, чтобы ее нельзя было осветить ответами на вопросы «как сделано?», «как построено?», «как работает?»… на любом уровне подготовки читателя.
Во втором случае задача совсем другая. Дать ответ на вопрос «почему?», значит показать, что некое событие или идея вытекают из других положений более общего характера. Но показать, что частное следует из общего, можно лишь методами логики, а еще лучше – методами математики.
Задача литератора, вступившего на тяжелый путь ответов на вопросы «почему?», неизмеримо сложнее трудностей, с которыми сталкивается автор, описывающий ледники Кавказских гор или устройство моторного катера с новыми обводами. Ему надо тщательно выделить аксиомы, лежащие в основе объяснения, уменьшить для облегчения восприятия высоту логических ступеней, ведущих от основания к вершине объяснения.
Чтобы объяснение «дошло», читатель должен держать в памяти одновременно все логические переходы, и каждый из них должен быть настолько ясным, чтобы казаться само собой разумеющимся.
Поэтому-то тяжело приходится и автору и читателю.
Подобные трудности возникают и при рассказе о применении теории вероятностей к исследованиям газов.
Напоминаем, что макросостояние тела реализуется беспрерывно меняющимися микросостояниями. Число различных микросостояний огромно, но вычислять его физики умеют. Как это нужно делать, показал Людвиг Больцман.
А зачем нужно знать эти числа, которые нельзя записать цифрами, даже истратив на это все мировые запасы бумаги? Какой смысл они имеют?
Если вы внимательно прочитали предыдущие части книги, то вы сами поспешите с ответом. То, что число способов осуществления того или иного результата события пропорционально вероятности результата, вы знаете, не правда ли? А теперь мы выяснили, что число микросостояний есть число способов реализации макросостояния.
По законам логики из этих двух позиций железно следует, что число микросостояний пропорционально вероятности макросостояния.
Вероятность состояния… Как понять сочетание этих двух слов? В самом прямом смысле. Как всегда, вероятности познаются в сравнении. Что вероятнее: стакан горячего чая с лежащим на дне куском сахара или стакан горячего чая с растворившимся в нем сахаром? Что вероятнее: раскаленный кусок железа, лежащий на земле, или кусок железа, принявший температуру почвы?
Слишком простые вопросы, скажет читатель. Согласен. Но сумели бы вы на них ответить без помощи теоремы Больцмана, которую мы сейчас разъясняем? Оказывается, переход к равновесию является дорогой к наиболее вероятному состоянию.
Мне остается убедить вас в том, что вероятность состояния (равная числу микросостояний, которыми она осуществляется) действительно достигает максимума при равновесии.
Попробуем прийти к этому выводу с помощью аналогии. Раскроем книгу на странице 68 [ссылка] и вспомним смысл чисел, образующих тридцатую строку чудесного треугольника Паскаля. Напоминаю, что каждое число показывает, сколькими комбинациями можно прийти к одному макроскопическому результату, к одному состоянию. Общее число бросков рулеточного шарика равно 30. Поэтому макросостояние в тридцать «красных» (начало строки) осуществляется 1 способом, двадцать девять «красных» и один «черный» (следующее число строки) – 30 способами, двадцать восемь «красных» и два «черных» (третье число строки) – 435 способами… 15 «красных» и 15 «черных» (середина строки) – 155 117 520 способами. Разные способы осуществления одного и того же результата (то есть одного и того же отношения «черного» и «красного»), но отличающиеся лишь разным порядком их выхода, – превосходные аналоги макросостояния.
Каковы признаки наиболее вероятного макросостояния? Примерно равное количество «красного» и «черного», отсутствие преимущества того или другого цвета, наибольший беспорядок. Действительно, можно сказать: наиболее беспорядочными являются те серии бросков, что в середине строки, то есть те случаи, когда «черное» и «красное» подравниваются. Упорядоченными сериями являются такие, в которых наблюдается большой перевес одного цвета. Полный порядок – это одноцветная серия. Треугольник Паскаля показывает, что беспорядочные серии встречаются много чаще упорядоченных. Нетрудно понять, распространив этот вывод на мир молекул, для изображения которого с помощью треугольника Паскаля потребовалось бы число его строк довести до миллиарда миллиардов, что вероятности беспорядочных серий будут в невообразимое число раз превосходить вероятность порядка.
Аналогия, конечно, не всегда совершенный способ доказательства, но все же я надеюсь, что эти выводы читатель примет без внутреннего протеста. Для системы молекул беспорядок означает отсутствие особенных направлений движения, отсутствие особых мест скопления молекул, отсутствие каких-либо часто встречающихся скоростей. На языке рулетки это и значит – примерно равное число «черного» и «красного».
Из нашей аналогии следует далее, что неравновесное состояние является менее вероятным. Раз оно неравновесно, то в нем нарушены устойчивые пропорции быстрых и медленных молекул, плотность неоднородна по объему, имеются преимущественные направления движения молекул… То есть «черного» много больше, чем «красного».
Несколько страниц назад я принялся разъяснять фразу: «равновесное состояние является наиболее вероятным». Надеюсь, что я справился с этой задачей. Мы увидели, что наблюдаемое состояние тела осуществляется огромным числом микросостояний; выяснили, что число микросостояний пропорционально вероятности макросостояний; методом аналогии показали, что вероятность состояния возрастает с беспорядком в расположении и движении частиц. Из всего этого по законам логики мы пришли к этой действительно емкой фразе, усвоение которой, я боюсь, потребовало от читателя некоторого напряжения.
В студенческие годы мне попала в руки толстая книга в ярко-синем переплете, изданная в Томске. Это был курс термодинамики. В предисловии автор писал:

«Хочу предупредить учащихся о том, что понятие энтропии усваивается с большим трудом. Я лично понял, что такое энтропия, примерно после двадцати лет педагогической деятельности».

Я помню, как изумила меня наивная и откровенная скромность автора.
Содержание только что прочитанного параграфа приведет нас, как вы сейчас увидите, к понятию энтропии. Так что, если вам было трудно, не удивляйтесь.

Обезьяна за пишущей машинкой

Второе начало термодинамики является железным законом природы. На предыдущих страницах мы попытались сформулировать его на языке вероятности. Мы увидели, что равновесное состояние систем наиболее вероятное, и поэтому вполне понятно стремление всех тел и систем перейти к покою или, вернее, к «мертвой жизни». И вот вопрос – раз речь идет «всего лишь» о вероятностном законе, то почему не допустить, что второе начало может нарушаться и тела самопроизвольно могут выходить из положения равновесия? Зафиксированы же в истории Монте-Карло серии из двадцати двух выпадений красного подряд?!
Строгое подчинение природы второму началу термодинамики есть, конечно, следствие закона больших чисел.
Вместо десятков и сотен тысяч событий, фигурирующих в отчете игорного дома, в мире молекул мы оперируем числами, выражающимися единицей с двадцатью нулями. Поэтому самые крошечные вероятности редчайших и драматических событий, случающихся в Монте-Карло, в миллиарды миллиардов раз превосходят вероятности самопроизвольного отклонения системы молекул от положения равновесия. Но если все те же законы больших чисел не запрещают абсолютно появления невероятных событий, то интересно узнать, какова вероятность «невероятного» события.
Посадим шимпанзе за пишущую машинку. Посмотрев, как бойко отстукивает страницу человек, обезьяна тоже начинает печатать. Буква за буквой, строка за строкой… Через полчаса, выкрутив обезьянью страницу из машинки, читаем:

Не мысля гордый свет забавить,
Вниманье дружбы возлюбя,
Хотел бы я тебе представить
Залог достойнее тебя…

Возможно? А почему нет? Шимпанзе колотит по клавишам как попало. Последовательность букв может быть любой, так как они равновероятны. А вычислить вероятность каждой из них и в том числе четырех строк, открывающих «Евгения Онегина», абсолютно просто. Букв в алфавите, будем считать, тридцать. Вероятность 1 «н» на первом месте – равна одной тридцатой 1/30; вероятность «не» – 1/900 = (1/30) 2 , вероятность «не м» – 1/2700 = (1/30) 3 и так далее. Всего букв в четырех строках 86. Вероятность напечатать случайно эти четыре строки равна одной тридцатой в восемьдесят шестой степени (1/30) 86 . Это число равно 10 -127 , то есть единице, поделенной на единицу со 127 нулями.
Велика или мала вероятность обезьяньего гения? Число вроде бы совершенно мизерное, но сравним его с вероятностью отклонения тела от равновесия. Подберем пример нарушения равновесия, где была бы такая же вероятность.
Скажем так, если тело находится в тепловом покое, то, разумеется, все его точки имеют одинаковую температуру. Но имеется все же крошечная вероятность, что второе начало термодинамики нарушится. Так что в принципе возможно, что на одном конце булавки температура вдруг ни с того ни с сего станет выше, чем на другом. Чем больше отклонение, тем меньше его вероятность. На сколько же долей градуса нарушится второе начало с вероятностью в 10 -127 , то есть с той вероятностью, с которой обезьяна сочинила пушкинское четверостишие? Можно рассчитать – оказывается, на 10 -16 градуса. А это очень и очень далеко за пределами измерительной техники. Даже вероятность создания всего «Евгения Онегина» методом случайного «тыка» в клавиши – а она равна что-то 10 –150000 – в миллион раз больше вероятности флуктуации температуры, которую можно было бы обнаружить обычными приборами.
Пожалуй, приведенные данные достаточно красноречивы, и я надеюсь, что доказал читателям полную невозможность самопроизвольного выхода из равновесия окружающих нас тел. А этим, в свою очередь, доказал невозможность создания вечного двигателя второго рода. Неизмеримо вероятнее обезьяне написать собрание сочинений Пушкина, чем создать захудаленький вечный двигатель, выкачивающий тепло из окружающей среды.
Превосходной моделью, иллюстрирующей незыблемость вероятности равновесного состояния, служит ящик, в который засыпают черные и белые зерна. Если их перемешать лопаткой, то скоро они распределятся равномерно по всему ящику.
Зачерпнув наудачу горсть их, мы найдем в ней примерно одинаковое число белых и черных зерен. Сколько бы мы ни перемешивали, результат будет все время тем же – равномерность сохраняется. Но почему не происходит разделения зерен? Почему долгим перемешиванием не удастся черные зерна переместить вверх, а белые вниз?
Все дело в вероятности. Такое состояние, при котором зерна распределены беспорядочно, то есть черные и белые равномерно перемешаны, может быть осуществлено огромным множеством способов (любые два зернышка – черное и белое – можно поменять местами, а беспорядок останется беспорядком) и, следовательно, обладает самой большой вероятностью. Напротив, такое состояние, при котором все черные зерна окажутся вверху, а белые внизу, единственное (ни одного черного зернышка нельзя заменить на белое; как только это сделаешь полный порядок пропал). Поэтому вероятность его осуществления ничтожно мала.
Вечное тепловое движение непрерывно перетасовывает молекулы, перемешивает их так, как это делает лопатка с зернами в ящике.

Энтропия

Внесем небольшое терминологическое изменение в закон о максимальной вероятности равновесного состояния.
Очень часто в физике величины, которые меняются в больших пределах, заменяют их логарифмами.
Напомним, что такое логарифм. Когда я пишу о науке для так называемого массового читателя, для читателя вообще («дженерал ридер» – по-английски) и вынужден использовать какой-либо термин, который в науке имеет такое же самое распространение, как, ну скажем, поэма в литературе, то впадаю в смущение. Объяснять?! Можно обидеть читателя, который вправе сказать: «За кого ты меня принимаешь, неграмотный я, что ли?» Не объяснять? А вдруг он позабыл и не поймет того, о чем будет говориться дальше. Поэтому все же напомню: 10 2 = 100; 10 3 = 1000; 10 4 = 10000 и т.д. Числа 2, 3, 4 и т.д. представляют собой десятичные логарифмы 100, 1000, 10000 и т.д. Как видим, само число возросло в сто раз, а логарифм лишь вдвое.
Логарифмы оказываются полезными и в нашем случае. Вместо того чтобы пользоваться «вероятностью состояния», в обиход вводят «логарифм вероятности состояния». Этот логарифм и называется энтропией.
Закон природы, согласно которому тепло не переходит от холодного к горячему, маховик не раскручивается за счет охлаждения оси и прилегающего к нему воздуха и раствор медного купороса не делится на воду и купорос, кратко формулируется так: энтропия в естественных процессах всегда растет.
Закон возрастания энтропии – важнейший закон природы. Из него вытекает, в частности, и невозможность создания вечного двигателя второго рода, и, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27