А-П

П-Я

 

В третьем случае прав Сумбурук, а бабушка ошибается.
Из сказанного ясно, что при исследовании нечетких силлогизмов (или D-cиллогизмов , как их принято называть) необходимо анализировать области в пространстве параметров ?, ?, ?, в которых будут истинны или ложны те или иные силлогизмы. В частности, для силлогизма бабушки доказывается следующее утверждение, которое естественно было бы назвать Теоремой бармена: «Силлогизм бабушки истинен только в тех точках параметрического пространства, в которых выполняется соотношение ??max[0,2?1/?, 1?(1??)(?+1/?)]». Но, наверное, ни бармен, ни Сумбурук не смогли бы так четко сформулировать нужный для разрешения их спора результат.
Рассуждая о споре в баре, мы незаметно сформулировали метод формального поиска оценок нечетких квантификаторов в схемах рассуждений. Ведь если вернуться к схемам предшествующего раздела, то становится ясным, что метод решения силлогизма бабушки вполне пригоден для поиска
2 в заключениях этих схем.
Коллекция схем
Среди схем правдоподобных рассуждений встречаются не только те, которые мы расссмотрели и которые основаны на индуктивном выводе, аналогиях или нечетких квантификаторах. Многими исследователями предлагались и иные схемы. Их количество достаточно велико и продолжает расти. В этом разделе мы приведем (практически без комментариев) примеры схем, в основе которых лежат соображения, связанные с теорией вероятностей и аналогией, а также несколько схем, типичных для теории возможностей , активно развивающейся в последние годы ветви теории рассуждений.
Рассмотрим прежде всего схемы рассуждений, опирающиеся на свойства вероятностей, т.е. вероятностные схемы рассуждений .

Рассуждением, основанным, например, на схеме 2, может служить следующее: «С вероятностью, большей 0,7, при переохлаждении двигателя он не заводится с помощью стартера. Вероятность того, что он не заводится, меньше 0,5. Следовательно, вероятность того, что двигатель переохлажден, меньше min(1,1–0,7+0,5), т.е. меньше 0,8». Так же нетрудно придумать примеры и для других схем вероятностных рассуждений.
Рассмотрим две схемы рассуждения с учетом необходимых условий .

Значения q и r необходимости в этих схемах могут оцениваться в каких-то специальных единицах. Можно считать, например, что имеется лингвистическая шкала нечетких квантификаторов необходимости. Тогда q и r будут соответствовать некоторые интервалы или усредненные характеристики этих интервалов. В качестве примера рассуждения с учетом необходимых условий в соответствии со схемой 5 приведем следующее рассуждение: «Если у меня будет дача, то необходимо будет купить велосипед. Дача мне крайне необходима. Тогда покупка велосипеда для меня необходима».
Рассмотрим еще две схемы, в которых наряду с необходимостью учитывается возможность некоторых фактов, явлений или действий. Подобные схемы (как и две предшествующие) характерны для упоминавшейся теории возможностей.

Пример рассуждения, основанного на схеме 7: «Когда поднимается температура в реакторе, чрезвычайно необходимо понизить в нем давление. Возможность повышения температуры в реакторе высока. Следовательно, возможность того, что надо будет снижать давление в реакторе, либо больше нуля, либо больше той возможности, которая приписана событию повышения температуры». Альтернативный характер этого рассуждения обусловлен тем, что q и r при проведении его не были оценены количественно. Это не позволяет сделать окончательный альтернативный вывод в следствии.
Завершим раздел еще тремя схемами рассуждений, в которых учитывается возможная взаимосвязь А и В , а также некоторые соображения из рассуждений по аналогии.

Каждый, кого интересуют схемы правдоподобных рассуждений, может без труда увеличить нашу коллекцию, например, заимствовав их из книги Д. Пойи, приведенной в списке литературы. Нам же необходимо двигаться дальше к тем человеческим схемам рассуждений, в которых активно используются знания, хранящиеся в его памяти, т.е. к рассуждениям, на которые опирается интеллектуальная деятельность человека и ее моделирование в современных интеллектуальных системах.

Глава пятая. ВЫВОД В БАЗЕ ЗНАНИЙ

Приходится порой простые мысли
доказывать всерьез, как теоремы.
О. Сулейменов. От января до апреля
Что такое интеллектуальная система
Проблема моделирования человеческих рассуждений стала чрезвычайно актуальной в конце 70-х годов, когда в области искусственного интеллекта появились практически интересные системы. В последующие несколько лет возникла новая отрасль индустрии – производство интеллектуальных систем.
Причин скачкообразного развития работ по созданию систем искусственного интеллекта было несколько. Главнейшими из них можно считать три: необходимость создания ЭВМ пятого поколения, переход к роботизированным производствам и появление экспертных систем.
Как известно, ЭВМ пятого поколения отличаются от машин предыдущих поколений тем, что в них встроены функции программиста. По словесному заданию задачи, сформулированному на ограниченном профессиональном языке, эти ЭВМ способны сами построить необходимую рабочую программу (синтезировать ее из отдельных модулей, хранящихся в памяти ЭВМ) и выполнить ее. Для этого в состав ЭВМ должна входить база знаний, в которой хранится информация о закономерностях, присущих данной проблемной области, и методах решения характерных для нее задач. Кроме того, в состав ЭВМ должен входить специальный блок – решатель, в который встроены процедуры, подобные логическому выводу. С помощью решателя на основании сведений из базы знаний автоматически синтезируются нужные для пользователя программы. На рис. 29 приведена общая структура ЭВМ пятого поколения. Отметим, что процессор, показанный на рисунке, – это обычное арифметическое устройство с необходимой оперативной памятью, а внешняя память служит для хранения данных, нужных для решения задач. Таким образом, база знаний является новым специфическим блоком (как и система общения и решатель) в структуре ЭВМ пятого поколения.

Рис. 29.

В роботизированных производствах используются роботы третьего поколения. Они должны быть достаточно автономны в своих действиях и уметь выполнять необходимый набор операций в динамически изменяющихся условиях производства. Это означает, что они не могут довольствоваться набором встроенных в них программ жесткого поведения. Интеллектуальный уровень таких роботов должен быть достаточно высоким. В их систему управления необходимо включить специальный блок – планировщик, задачей которого является составление программы действий робота в тех реальных условиях окружающей среды, которые в данный момент наблюдаются рецепторной системой робота. Для планирования целесообразной деятельности робот третьего поколения должен обладать определенными знаниями о свойствах окружающей среды и методах достижения целей в ней. Эти знания хранятся в его базе знаний, показанной в общей структуре робота на рис. 30. Глядя на этот рисунок, легко установить аналогии со схемой, показанной на предыдущем рисунке. В ЭВМ пятого поколения и в роботах третьего поколения осуществляется планирование будущей деятельности: автоматический синтез программы, выполняемый решателем, и программа деятельности, создаваемая планировщиком. Оба блока работают на основе знаний, хранящихся в базе знаний.

Рис. 30.

Экспертные системы, структура которых показана на рис. 31, также содержат базу знаний и логический блок, функции которого похожи на функции решателя и планировщика. Задача логического блока состоит в поиске вывода, ответа на входное сообщение, поступившее в систему. В базе знаний хранится необходимая информация о проблемной области, в которой работает пользователь. Его запросы поступают на профессиональном ограниченном естественном языке. В системе общения они преобразуются во внутреннее представление, с которым работает логический блок. Это внутреннее представление преобразуется в запрос к базе знаний. Если прямого ответа на запрос в базе нет, то логический блок осуществляет поиск косвенной информации, получаемой из хранящейся в базе с помощью достоверного или правдоподобного вывода. Система объяснения (это специфический блок, отличающий экспертные системы от других интеллектуальных систем) при необходимости по требованию пользователя поясняет ему, как получена та информация, которая выдана в качестве ответа.

Рис. 31.

Мы хотим отметить, что ядром всех основных типов рассмотренных интеллектуальных систем являются база знаний и блок, осуществляющий вывод с помощью знаний (решатель, планировщик или логический блок). Этот вывод составляет основную процедуру, реализуемую в интеллектуальных системах.
Знания о внешнем мире могут иметь двоякую природу. Они могут содержать декларативное описание фактов и явлений внешнего мира, фиксирующее их наличие или отсутствие, а также основные связи и закономерности, в которые эти факты и явления входят. Но они могут содержать и процедурные описания того, как надо манипулировать с этими фактами и достигать целей, интересных для системы. Для описания знаний в интеллектуальных системах используются специальные языки описания знаний (ЯОЗ). Эти языки могут иметь различную природу. Нас будут интересовать (из-за темы данной книги) лишь языки логического типа. Простейшими видами таких ЯОЗ являются языки исчисления высказываний или исчисления предикатов вместе с теми процедурами вывода, которые для них известны. Однако в современных интеллектуальных системах такие языки используются довольно редко. Куда более распространены в них языки, основанные на продукциях . Продукции в общем виде можно записать в форме «Если…, то…». Сама по себе эта форма оказывается весьма характерной для фиксации знаний в различных областях человеческой деятельности. Вот несколько примеров текстов, взятых почти наугад из различных книг.
1. Если Академия заблагорассудит присоединить к себе ученого русского или иностранца, который не столько еще известен, чтобы мог требовать чести быть почетным членом, но своими полезными сочинениями или познаниями, или же ревностию и старанием, оказав полезные Академии услуги, обратил на себя отличное внимание, то она принимает его в корреспонденты, которые также разделяются на русских и иностранных. (Устав Санкт-Петербургской Академии наук 1836 года, № 85)
2. Если враг не сдается, то его уничтожают. Если кто к нам с мечем придет, то от меча и погибнет. (Высказывания полководцев.)
3. Если температура в верхней зоне превысит 75°, то необходимо открыть задвижку № 7. (Из инструкции.)
Число подобных примеров можно увеличивать до бесконечности. Они показывают, что представление фрагментов наших знаний о внешнем мире и действиях в нем в виде продукций имеет весьма большое распространение. Часть специалистов по интеллектуальным системам считает, что запись знаний в виде систем продукций носит универсальный характер – любые знания можно записать в такой форме. Они приводят немало примеров, когда знания, внешне не имеющие продукционной формы, удается перевести в систему продукций. Вот один из таких примеров.
Химические реакции мы со школьных лет привыкли воспринимать в форме соотношений следующего вида:

И т.д.
Покажем, как подобные утверждения можно записать в продукционной форме. Введем шесть сортов базовых элементов. К первому сорту отнесем металлы: Q 1={Cu,Mg,Zn,…}. Ко второму – газы: Q 2={H2,О,N,…}, к третьему – воду: Q 3={H2O}. Четвертый сорт составляют окиси: Q 4={MgO,CuО,…}. Пятый сорт образуют кислоты: Q 5={H2SO4,HCl,…}. Наконец, шестой сорт образуют соли: Q 6={ZnSO4,NaCl,…}. Зададим два базовых отображения. Первое отображает элементы из Q 4 в элементы Q 1. С его помощью для окисей выделяются основания. Второе отображение сопоставляет с именами веществ (под веществом будем понимать металл, газ, окись, воду, кислоту или соль) их химические формулы. Введем еще два оператора, которые будем использовать в продукциях: A (q ) и E (q ). Оператор A (q ) добавляет в базу знаний q , а оператор E (q ) убирает q из базы. Выпишем первый тип продукций для описания химических реакций.
Эта продукция годится для описания двух из приведенных выше химических реакций. Для описания третьей реакции используем другой тип продукций.
Вспомним программу «Логик-теоретик», которую мы обсуждали в третьей главе. Она была основана на том, что при доказательстве равенства двух выражений в исчислении высказываний использовалось понятие различия в двух выражениях и подбирались такие преобразования, которые эти различия устраняли. Для соотнесения различий с преобразованиями была построена таблица, в которой указывалось, какие преобразования какие различия устраняют. От этой таблицы чрезвычайно легко перейти к продукционной системе. Если i есть номер различия, a F * – одно из преобразований, то запись i
F * соответствует утверждению, что при наличии различия i можно применить преобразование F *.
Два последних примера показывают, что продукциями являются не только те выражения, которые имеют форму «Если…, то…», но и многие другие выражения. К ним, по сути, сводятся все каузальные, т.е. причинно-cледственные утверждения, подобные тем, которые мы обсуждали в предшествующей главе. К ним же относятся и любые схемы вывода типа «посылки – следствие». Замкнутые системы правил типа законов короля Павзолия, описанных в романе Пьера Луиса «Приключения короля Павзолия», также могут рассматриваться как особая форма продукций. Даже такие утверждения, как знаменитое «Если звезды зажигают, значит, это кому-то нужно» (В. Маяковский), можно рассматривать как продукцию.
Продукционные системы получили при представлении знаний в последнее время наибольшее распространение. Поэтому посвятим им специальный раздел нашей книги.
Продукционные системы
Анализ структур ЭВМ пятого поколения, роботов автономного типа и экспертных систем приводит к обобщенной структуре, показанной на рис. 32. Эта схема при условии, что система R представляет собой продукционную систему, может послужить основой для классификации типов продукций . На ней показано взаимодействие «рассуждающей» системы с внешним миром и базой знаний, из которой рассуждающая система может черпать накопленную ранее информацию о закономерностях этого мира и его состояниях. Из внешнего мира в рассуждающую систему приходит сиюминутная, текущая информация о наблюдаемых в этом мире фактах и явлениях. А из базы знаний поступает информация, имеющая более фундаментальное значение. Она может описывать законы внешнего мира, правила действий в нем, целевые структуры или ожидаемые отклики внешнего мира на те или иные воздействия на него. В памяти рассуждающей системы хранится текущая информация, связанная с ходом рассуждений. Со временем она либо исчезает, либо передается для хранения в базу знаний. Последнее происходит лишь в том случае, когда в процессе рассуждений появилась информация, которая может оказаться полезной для рассуждающей системы в будущем.

Рис. 32.

Теперь приступим к классификации продукций.
1. Продукции типа AW
BR . В левой части продукции стоит информация, поступившая из внешнего мира, а в правой – сведения о вытекающих из этой информации изменениях в рассуждающей системе. Эти изменения сказываются на ходе рассуждений. Например, рассуждая утром о выборе места воскресного отдыха, вы вдруг слышите по радио сообщение о том, что в середине дня ожидается сильная гроза. Это сообщение и есть AW . В ответ на него может измениться весь ход ваших рассуждений о планах отдыха. Сразу же будут отброшены варианты, связанные с пребыванием за городом на открытом воздухе, а другие варианты приобретут куда больший вес. Это изменение предпочтительности вариантов отдыха характеризуется правой частью продукции BR . Сама продукция для данного случая могла бы выглядеть, например, следующим образом: «Если на улице идет дождь или гроза или они ожидаются в течение дня, то вместо прогулки лучше пойти в музей или кино».
В качестве AW может выступать не только некоторое сообщение о W или некоторый факт, имеющий место во внешнем мире, но и прямое воздействие из внешнего мира на рассуждающую систему. Но что бы ни стояло в левой части продукции AB
WR , в ее правой части стоят некоторые операторы, меняющие ход самих рассуждений.
2. Продукции типа AW
BK . Такие продукции отражают ситуацию передачи некоторого сообщения из внешнего мира для запоминания в базе знаний. Примером продукции такого типа может служить приказание, которое отдает командир разведчику: «Все, что увидишь интересного в окрестности переправы, запомни, а потом передай через связного».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22