А-П

П-Я

 

Их доклады на конференции были не менее интересны и значительны, чем доклады зарубежных коллег, их выступления в дискуссиях показали высокий уровень подготовки советских ученых, которые на равных с западными учеными могли обсуждать кардинальные проблемы своей науки.
Всесоюзная конференция по атомному ядру закончилась торжественным заседанием в Выборгском доме культуры. Выступили А. П. Карпинский, А. Ф. Иоффе, Поль Дирак. Профессор Вальтер рассказал собравшимся о новейших советских и иностранных установках по расщеплению атомного ядра.
Конференция закончила работу 1 октября. Оценивая ее значение, «Правда» писала: «Эта конференция во многом определила программу работ физико-технического комбината академика Иоффе».
Сам Иоффе так сказал в заключительном слове: «В качестве основной проблемы на вторую пятилетку мы намечаем также проблему ядра атома. Методы, которыми пользуется физика для разрушения ядра атома, смогут уже в ближайшем будущем найти себе применение в медицине и во многих других областях».
Успех конференции был и успехом оргкомитета во главе с Игорем Васильевичем Курчатовым, успехом всего физико-технического института.
Окончание работы ядерной конференции совпало с торжеством по случаю пятнадцатилетия института.
Пятнадцатилетие со дня создания ЛФТИ было отмечено приказом по Народному комиссариату тяжелой промышленности № 862 от 1 октября 1933 года, который гласил:

«За 15 лет своего существования Ленинградский физико-технический комбинат благодаря энергии руководителей, научных работников... сумевших направить свои знания и опыт на службу социалистическому строительству, имеет ряд крупнейших заслуг перед тяжелой промышленностью».

В пункте третьем речь шла о поощрении:

«Объявить благодарность за ценные научные достижения академику Семенову Н. Н., научным работникам: тт. Талмуду Д. Л., Курчатову И. В. ...»


Вторжение нейтрона

Настоящую бурю вызвало в лаборатории И. В. Курчатова известие об открытии Энрико Ферми наведенной активности под действием нейтронов. При бомбардировке альфа-частицами некоторые вещества испускают не протоны, электроны или другие заряженные частицы, а нейтроны. Это давало ученым источники нейтронов, поисками которых упорно занимались во многих лабораториях мира.
Источник нейтроновоказался легкодоступным. Достаточно было заключить в стеклянную трубку альфа-активный газ (радон) и порошок бериллия, чтобы получить поток нейтронов. Под действием альфа-частиц бериллий испускал нейтральные частицы. На их пути надо было лишь поставить мишень. (Мишень применяли в форме, цилиндра, внутрь которого и помещен источник нейтронов.) В качестве мишени использовали поочередно разные вещества.
Еще недавно возможные только теоретически исследования взаимодействия нейтрона с веществом вдруг стали практически осуществимыми. Открывшиеся перспективы воодушевляли Курчатова. Он не знал покоя, экспериментировал без конца.
Академик И. К. Кикоин вспоминает:

«Когда И. В. Курчатов работал уже в области ядерной тематики, сотрудники института часто были свидетелями такой „забавной“ сцены. По длинному коридору института со скоростью участника стометрового забега мчался человек с каким-то крохотным предметом в руке. Это был И. В. Курчатов, торопившийся доставить только что облученную нейтронами мишень в лабораторию для исследования очередного короткоживущего ядра».

Любопытно, что подобную же картину описывает и Лаура Ферми в книге «Атомы у нас дома». Энрико Ферми так же, как Курчатов, носился по длинному коридору с только что облученными мишенями. Дело в том, что счетчик Гейгера надо было располагать как можно дальше от того места, где проводилось облучение, – иначе сильный фон гамма-лучей путал бы исследователям карты; в то же время облученную мишень надо было как можно скорее поднести к счетчику, так как ее активность резко падала за считанные минуты...
Ампулы с радон-бериллиевыми источниками изготовляли для Курчатова в радиевом институте. Но количество их было недостаточным, поток нейтронов небольшим, а хотелось использовать возможности нового метода, как говорится, до дна. Игорь Васильевич нередко оставался на ночь в институте. По воспоминаниям работавших с ним, он, как, впрочем, и все тогда, не заботился об элементарной защите от излучений – на его пальцах постоянно была розовая молодая кожа – результат радиоактивных ожогов.
Перед нами стопа статей о его работах, относящихся к весне и лету 1934 года. Среди тех, кто помогал ему тогда, брат Борис Васильевич, Л. Мысовский – заведующий отделом физики радиевого института, основной поставщик ампулок.
За этой стопкой статей – часы раздумий и обсуждений.
Первые же опыты Ферми показали, что почти все элементы после облучения нейтронами испускают электроны. Это свидетельствовало о происходящих под действием нейтронов ядерных превращениях.
Каков характер этих превращений? Прежде всего удалось установить, что активность элемента, подвергнутого действию нейтронов, падает по определенному закону: у каждого свой период полураспада. Так, после облучения кремния его активность падала вдвое через каждые 2,3 минуты, независимо от того, через сколько времени после окончания облучения начинаются измерения. Поскольку больше никаких полупериодов не обнаружилось, можно было сказать: в результате воздействия нейтронов здесь образуется лишь одно радиоактивное ядро с периодом полураспада в 2,3 минуты. Но уже алюминий дал более сложную картину.
Было известно, что после облучения нейтронами алюминий становится радиоактивным, причем период полураспада составляет около 12 минут. И вот Игорь Васильевич с товарищами обнаруживают совершенно другое излучение – с периодом полураспада 15 часов!.. Тщательно перепроверяют результаты и наталкиваются на третье излучение! – период полураспада 2,3 минуты...
Значит при облучении обычного алюминия образуются ядра трех сортов!
Прежде всего было ясно, что новые радиоактивные ядра не могут сильно отличаться по своему заряду и массе от ядер исходного элемента и должны занимать соседние места в таблице Менделеева. Такими элементами могли быть натрий и магний. Исследователи проводят необходимый радиохимический анализ – так и есть! Обнаруживаются радиоактивный изотоп магния (период полураспада 10 минут) и натрия (период полураспада 15 часов). А каково третье вещество?
«Стараемся отделить химическим путем его от алюминия. Не удается, – рассказывал Игорь Васильевич в одной из своих лекций. – И не мудрено, ибо это вещество есть не что иное, как радиоактивный изотоп того же алюминия с периодом полураспада 2,3 минуты».
...Еще раньше в лаборатории Игоря Васильевича было установлено, что при облучении одноизотопного элемента фосфора также идут две независимые реакции с образованием радиоактивных изотопов алюминия и кремния. Так была раскрыта еще °дна тайна ядерных превращений – разветвление ядерных реакций под действием нейтронов. Но, конечно, далеко не последняя.


«Незаконный» близнец

Когда Игорь Васильевич и Лев Ильич Русинов начали опыты с облучением нейтронами брома, состоящего из смеси двух изотопов, ничто, казалось, не предвещало неожиданностей. Реле счетчика щелкало, отсчитывая частицы, излучаемые облученным бромом, уже выявились два новых радиоактивных ядра – и это было вполне закономерно: из двух устойчивых изотопов с массовыми числами 79 и 81 получались ядра с массовыми числами 80 и 82. Им и соответствовали два периода полураспада.
Наблюдения продолжались... Постепенно менялось выражение лиц у экспериментаторов. В щелчках реле они явственно чувствовали, как дает о себе знать еще одно радиоактивное ядро, которого не должнобы быть. Неожиданное появление третьего периода полураспада было либо результатом ошибки, либо... открытием. И Курчатов, и Русинов, и Мысовский еще и еще раз проверяли, нет ли ошибки. Но сомнения постепенно отпадали: обнаружен еще один элемент с периодом полураспа да 36 часов.
Решено было прежде всего по примеру того, как поступали с облученным алюминием, выделить неизвестный элемент при помощи химического анализа.
Однако никакими ухищрениями нового элемента обнаружить не удавалось. Но отрицательный результат в науке тоже зультат. В данном случае он говорил о том, что под действием нейтронов образовался не новый элемент, а третий радио активный изотоп брома.
...О странном, возбуждающем интерес эксперименте узнал весь институт. Заинтересовался им и Абрам Федорович Иоффе, хотя мысль его была занята проблемами полупроводников. Откуда появился у брома третий «незаконный» близнец?
Поначалу решили, что он возникает в результате реакции нового типа, которая проходит без захвата нейтрона а сопровождается выбрасыванием еще одного ядерного нейтрона.
Но экспериментаторы опровергли такое предположение. По расчетам теоретиков, реакция, сопровождающаяся испусканием нейтрона, должна бы требовать затраты энергии, а это возможно только при бомбардировке ядер быстрыми нейтронами. Она же, как доказали Игорь Васильевич и Лев Ильич Русинов, шла не только на быстрых частицах, но и на медленных...
Получалось, что новый изотоп по своему массовому числу... не отличается от уже исследованного. В нем столько же протонов и нейтронов, но совершенно другие свойства.
Так был сделан новый, принципиальной важности шаг в глубины атомного ядра. Оказалось, что свойства ядра зависят не только от количества частиц, но и от структуры. Ядра с одинаковым числом протонов и нейтронов, но разной структурой Курчатов назвал изомерами, а явление – ядерной изомерией.
Но какой же из изотопов брома «рождает» изомеры? Позднее установили, что бром с массовым числом 80 дает при взаимодействии с нейтронами два изотопа с периодами полураспада 18 минут и 4,2 часа.
Сейчас явление ядерной изомерии стало хрестоматийным, вошло во все учебники по ядерной физике. Оно подробно изучено, в том числе и самим Игорем Васильевичем, до конца жизни интересовавшимся судьбой своего открытия. Уже известно около сотни ядер-изомеров.
В краткой энциклопедии «Атомная энергия» так оценена эта работа И. В. Курчатова и его товарищей: «Примером выдающихся новых результатов, непосредственно связанных с развернувшимся в мировом масштабе изучением искусственной радиоактивности, может служить открытие ядерной изомерии искусственно активизированных веществ. И. В. Курчатов, Б. В. Курчатов, Л. И. Русинов, Л. В. Мысовский впервые наблюдали это явление в 1935 году в случае радиоактивного брома (Br^80). Значение ядерной изомерии в связи с вопросами структуры ядер начинает выясняться в самое последнее время».
Показательно и то, что в этом случае экспериментаторы, работавшие под руководством Игоря Васильевича, сами искали теоретическое обоснование открытому явлению. В связи с этим на одном из семинаров, где И. В. Курчатов и Л. И. Русинов докладывали о своих взглядах на процессы в ядрах-изомерах, Иоффе горячо поздравил их с успехом и высказал упрек в адрес теоретиков ядра.
– Жаль, что наши теоретики, – отметил он, – ничем не помогали экспериментаторам и им пришлось трудиться на два фронта: и выполнять сложнейшие опыты и тут же истолковывать факты. Тем знаменательнее их успех!
1935 год – поистине феноменальный по плодовитости даже для такого необычайно трудолюбивого ученого, каким был Игорь Васильевич. В этом году было опубликовано 17 его оригинальных работ. В качестве участников исследований выступали Г. Д. Латышев, Л. М. Неменов, М. А. Еремеев, И. П. Селинов, Д. 3. Вудницкий, Л. В. Мысовский, Л. А. Арцимович и другие.
О некоторых из этих ученых мы уже говорили и расскажем впоследствии, о двух же из них есть смысл рассказать здесь.
Л. М. Неменов, сын известного рентгенолога, основателя рентгеновского института, еще студентом по настоянию отца пришел в физтех. Иоффе определил юношу в лабораторию Курчатова:
– Вот, Игорь Васильевич, знакомьтесь – Буба Неменов. Будет вам помогать.
Давая поручения, Курчатов скоро заметил, с какой добросовестностью Буба берется за любое дело: красит детали, прокладывает трубы. Лаборатория пришлась Бубе по душе. Он окончил институт, был переведен в другой отдел на самостоятельную работу. Но в дни «радиоактивной лихорадки» Неменов пришел к Курчатову, принял участие в нескольких работах и «заболел» ядерной физикой окончательно. Л. М. Неменов так и остался работать с Игорем Васильевичем.
Владимир Иосифович Бернашевский работал механиком на одном из заводов. Проходя после смены мимо здания физтеха, где сверкали молнии, раздавался зловещий треск, он останавливался как зачарованный. Однажды он зашел туда попроситься на работу. Его взяли. В первые же. дни на него обратил внимание Игорь Васильевич. Уж очень увлекался опытами парень! И вот уже он не механик Володька, а уважаемый соавтор уважаемого ученого.
Знакомясь с именами тех, кто работал с Игорем Васильевичем, мы не можем не заметить, что число их год от году росло. Академик А. П. Александров справедливо писал по этому поводу: «Создание „задела“ на будущее, расширение фронта работ, привлечение новых сил – вот стиль Игоря Васильевича. В новую область физики И. В. Курчатов входил, как в битву, собирая силы на главном направлении, создавая резервы для будущего».


Если «затормозить» нейтроны...

Вскоре после открытия наведенной радиоактивности Энрико Ферми начал исследования взаимодействий нейтронов с веществом не только на той большой скорости, с которой вылетали нейтроны из радон-бериллиевого источника, а и на других, меньших скоростях. Было известно, что нейтроны вылетают из бериллия со скоростью 30 тысяч километров в секунду. Если их «затормозить», то как они будут взаимодействовать с ядрами?
В 1934 году к подобным же исследованиям приступил и Курчатов. Он писал:

«Согласно нашим представлениям большие скорости вовсе не обязательны для того, чтобы нейтрон мог проникнуть в ядра элементов, расщеплять должны были и более медленные нейтроны».

Чтобы проверить это утверждение практически, следовало найти замедлители нейтронов.
И первое, что пришло в голову исследователям, применить воду.
Игорь Васильевич так рисовал механизм замедления нейтронов в воде: «Нейтроны, проходя через воду, испытывают время от времени столкновения с протонами, и ввиду того что масса обеих частиц примерно одинакова, при каждом столкновении энергия нейтрона... уменьшается. Вместо быстрых нейтронов мы получим, таким образом, медленные, со скоростью в 1000 километров в секунду».
Опыты подтвердили предположения, но кое-что и уточнили:

«Детальное исследование свойств замедленных (водой или парафином) нейтронов показало, что их скорости еще меньше, чем мы... рассчитывали... Нейтроны, проходя через воду или парафин, испытывают большее число столкновений, чем это было указано выше, и должны достигать по расчету в конце концов (в толщинах парафина всего лишь в 10 см) тепловых скоростей... порядка двух километров в секунду».

Ну хорошо, медленные нейтроны получены. Как они взаимодействуют с ядрами? Результат исследования искусственной радиоактивности, возбуждаемой замедленными нейтронами, полученный Э. Ферми, оказался совершенно неожиданным: медленные нейтроны вызывали искусственную радиоактивность в еще большей степени, чем быстрые. В этом немедленно убедился и Игорь Васильевич.
«Полученные с медленными нейтронами результаты настолько поразительны, – писал в те годы И. В. Курчатов, – что первое время казалось, будто мы имеем дело вовсе не с нейтронами, а с какими-то новыми частицами».
Потребовалось пересмотреть прежние взгляды. Игорь Васильевич отмечал: «Мы видим, что основные условия возможности ядерных реакций, которые мы ранее указывали (наличие большой скорости у взаимодействующих частиц), не всегда обязательны. Оказывается, что наоборот – при малых скоростях нейтронов ядерные расщепления проходят с максимальной интенсивностью».
Но со всеми ли ядрами происходит такое? Выяснению характера взаимодействия медленных нейтронов с ядрами разных элементов и были посвящены эксперименты 1935 года.
Работы велись и в физтехе и в радиевом институте. Много сил отнимало налаживание приборов. Нередко они все же подводили в самый горячий момент. Борис Васильевич Курчатов вспоминает, как Игорь Васильевич выручил однажды из «беды» академика Хлопина и его супругу, экспериментировавших в одной из лабораторий радиевого института. У них уже все было готово к опыту, как вдруг... щелкнули переключатели, а приборы молчат.
– Проклятый счетчик! – с досадой произнес женский голос.
Курчатову, находившемуся в соседней комнате, стало ясно – счетчик Гейгера «закапризничал».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26