А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

После окончания войны мы очутились на территории, контролируемой французами. Тогда я и встретился с Жолио-Кюри. Он приехал с группой офицеров знакомиться с состоянием научных исследований в Германии.
После захвата Гитлером Франции мне было предложено возглавить Институт радия в Париже. Я отказался, и поэтому наш разговор с Жолио-Кюри начался с того, что он поблагодарил меня. Оказывается, он знал об этой истории.
Многих немецких ученых в это время вывозили в Америку или Англию. На родине нам категорически запрещалось заниматься наукой, особенно в области ядерной физики. Жолио-Кюри понимал всю нелепость такого запрета для ученого, которого лишают любимой работы.
И спустя год не только добился для меня разрешения, но и предоставил в мое распоряжение бывшие французские казармы.
Начинать пришлось на пустом месте. Но огромное желание победило трудности. Уже в 1946 году студенты пришли на лекции. Ставились первые опыты. Ставились с трудом – не хватало лабораторного оборудования.
На университет и исследовательские институты был всего один устаревший спектроскоп.
И только через несколько лет казармы Наполеона изменились до неузнаваемости, появились хорошо оснащенные лаборатории, возник новый научный центр. Его "крестным отцом" я считаю Жолио-Кюри.
В нашем институте много внимания уделяется радиационной химии. Лаборатории располагаются в отдельных корпусах. Скоро к ним присоединится реактор.
В основном наши интересы концентрируются на ядерном делении, а конкретнее – на делении урана-235 под действием медленных нейтронов. Это очень важно для изучения механизма самого процесса.
В результате деления урана образуется более ста различных изотопов. Большинство из них сразу исчезает, их жизнь измеряется секундами и долями секунды. Мы пытаемся быстро и точно проводить химические анализы и разделять изотопы. Работа эта чрезвычайно трудная, но она необходима для атомной промышленности.
У нас есть кое-какие успехи… Но надо сказать честно, что они еще невелики. Когда слушаешь доклады ваших ученых на конференциях, просто удивляешься, как много у вас сделано!
Когда я думаю о будущем, у меня рождаются некоторые опасения, – говорит профессор. – Каждому ученому хочется, чтобы кто-то из учеников продолжил его дело, чтобы была создана его научная школа. Это одна из причин, которая побудила меня связать свою жизнь с университетом. Уже многие годы я обучаю студентов, по далеко не все остаются на научной работе. Чаще уходят в промышленность – там больше платят. Есть у меня сейчас очень способный ученик – доктор Герман. Он уже провел несколько блестящих исследований. И хотя ему еще нужно учиться, фирмы начали переманивать его, предлагая солидные деньги.
Такие случаи, к сожалению, у нас нередки. Но я всетаки надеюсь, что наш институт превратится в крупный центр ядерной химии. Думаю, что здесь будет экспериментировать и мой сын, когда станет физиком. Я на него рассчитываю… А пока учусь русскому языку, без Знания которого невозможно быть сегодня хорошим ученым.
Очень хочу посетить вашу страну, – сказал профессор Штрассман, когда мы прощались. – Ваши ученые добились выдающихся достижений в использовании атомной энергии. Недавно я ездил по атомным центрам США, и, когда знакомился с лабораториями, американские коллеги неизменно подчеркивали: "Нет, это не столь редкая установка; вы бы посмотрели у русских…" Вот я и хочу посмотреть на все своими глазами. Постараюсь в ближайшее время это осуществить…
Помнит ли ученый каждый из тех дней, когда он ставил, один опыт за другим? Маловероятно, потому что такие дни похожи друг на друга, как близнецы. Но он не забудет никогда то мгновение, когда получен последний, решающий результат! И поэтому, пожалуй, справедливо утверждать, что жизнь ученого измеряется не обычными неделями, месяцами, годами, а исследованиями, которые он провел. Мало кто помнит, сколько лет прожил Эдисон, но о том, что у него было около двух тысяч изобретений, напоминать, наверное, излишне… Лишь значение открытия в истории человечества несет заслуженную славу его авторам…
Жолио-Кюри, Резерфорда, Бора, Сциларда, Ферми, Курчатова, Мейтнер, Гана, Штрассмана, Томсона, Оппенгеймера и многих других, образовавших "могучую кучку" в ядерной физике 30-х годов, сегодня знают все.
Каждый из них внес свою лепту, трудно даже сказать, кто большую, кто меньшую, в эту отрасль науки.
Мне приходилось встречаться с некоторыми из них, в частности с Лео Сцилардом, когда он посещал нашу страну. На одном из выступлений перед писателями и журналистами венгерский ученый, большую часть жизни проработавший в Америке, рассказал о своей судьбе.
В его словах слышалась горечь, хотя он и пытался ее скрыть.
Имена Сциларда и его коллег, принимавших участие в развитии атомной науки, стали широко известны. Но затем Хиросима и Нагасаки… Всего две бомбы, и сотни тысяч людей, сгоревших в адском пламени. Тех, кто изготовил эти бомбы, человечество возненавидело.
Ученые возмутились, стали ездить по городам Америки, по другим странам и организовывать митинги протеста, требовать запрещения смертоносного оружия. Они сами хотели уничтожить то, что породили. Но напрасно: все – чаще и чаще на полигонах США вырастали атомные грибы… Советскому Союзу, чтобы противостоять агрессивным замыслам, пришлось тоже создать атомную бомбу, и вскоре мир узнал, что и у нас есть такие же бомбы, даже более мощные – водородные, которые способны "охладить пыл" любого, кто посмеет вторгнуться в пределы нашей Родины…
Военная машина Пентагона раздавила «строптивых» ученых-атомников. Некоторые из них сдались и вновь вернулись в казематы-лаборатории, которые надежно охранялись нарядами солдат. Большинство, как и Лео Сцилард, перешли в биологию, химию, автоматику. Лишь бы подальше от атомного ядра…
Штрассман в разговоре С нами сказал о великом содружестве ученых. Да, оно существовало в 30-е годы, но в 40-е распалось. Мир был пересыщен страхами и подозрениями. Любая работа по ядерной физике считалась глубоко секретной. Особенно неистовствовали представители Пентагона: они тщательно конспирировали исследования и своих ученых, и европейцев. Мотивировалось это "всеобщей безопасностью".
Вред, наносимый такой мнимой секретностью, очевиден. В проигрыше оказывалась ядерная физика, которая всегда стремилась служить людям, делу мира, прогрессу.
Нужно было восстановить контакты, но это было немыслимо, пока над миром развевалось знамя атомной и водородной бомбы. Необходимо было поднять новое знамя, которое показало бы, что ядерная физика – наука отнюдь не воинственная, а сугубо мирная.
Это знамя подняли советские ученые. На нем было написано: "Атомный реактор. Первая атомная электростанция введена в действие!" Затем сенсационный доклад Игоря Васильевича Курчатова в Англии, где он рассказал об отечественных работах по термоядерному синтезу.
Мир был ошеломлен.
Потом новое сообщение из СССР: "Строится атомный ледокол "Ленин". И еще одно: "Сооружаются мощные атомные электростанции – Белоярская и Воронежская!"
Наша страна первой протянула руку дружбы в мирном использовании атомной энергии. И этот жест был по достоинству оценен прогрессивными силами. Физики начали вновь встречаться на конгрессах, обмениваться идеями, сосредоточивать свои усилия на наиболее важных направлениях. Но если в 30-х годах это было прежде всего раскрытие внутриядерных процессов, то теперь центр тяжести исследований несколько переместился.
Уже не создание ядерного реактора, а дальше вперед – в области его использования. Качественное отличие.
Ядерный реактор не только положил начало новой отрасли науки и техники – атомной энергетике, но и позволил углубиться в атомное ядро, изучать более тонкие физические процессы, о которых ученые и не подозревали.
Одно из основных направлений ядерной физики – практическое применение ядерных реакторов как источпиков тепла для электростанций. Большинство ученых в разговорах о будущем энергетики уделяют атомной энергии значительное место. В связи с тем, что запасы угля и нефти постепенно истощаются (кстати, с каждым годом их будет все больше и больше потреблять химическая промышленность), уран приобретает первостепенное значение.
За окнами вагона мелькают фермы моста. Волга. Еще два часа, и я в Димитровграде.
За эти сутки я много думал о "крестных отцах" города. Многие из них не были здесь никогда, они даже не дожили до наших дней, не узнали о его существовании. Но он несет на себе печать их труда, их мыслей, надежд.
Прошлое… Много в нем было интересного, незабываемого. О нем написаны книги. Много книг. И поэтому я не стал утруждать читателя слишком длительным экскурсом в это прошлое. Нам предстоит еще увидеть настоящее, не менее увлекательное и заманчивое. В прошлое мы чуть-чуть заглянули. Я решил совершить это маленькое путешествие только потому, что без него трудно будет понять происходящее сегодня в атомной науке и технике.
Итак, вперед! В город, где скрещиваются пути прошлого, настоящего и будущего!
Димитровград меня разочаровал. Старые деревянные постройки, традиционный рынок у вокзала… Неожиданно из соснового парка выглянул стройный, изящный дом.
Он показался чужеродным. Но к нему присоединился другой, третий, четвертый… А вот и каменное здание горкома партии. Картина резко меняется…
Институт находится в десяти километрах от города, чтобы они оба могли развиваться, не мешая друг другу.
НИИАР растет. Все дальше уходят в лес корпуса лабораторий и установок. Где предел? Никто не знает.
– В одном уверен, – пошутил Олег Дмитриевич Казачковский, директор института, – что скоро пешком, как сейчас, территорию не обойдешь, автобусы придется пускать…
Когда Олег Дмитриевич рассказал, какие установки у них есть, я очень удивился.
– А как же любимые быстрые реакторы? – вырвалось у меня…
Вопрос не был странным. Олег Дмитриевич понял, Дело в том, что мы с ним и раньше встречались, в Обнинске.
…Еще до сообщения о пуске в СССР первой атомной электростанции жители Обнинска недоумевали: поднялась в городе большая труба, а дым из нее не идет.
Только потом они поняли, что стали свидетелями строительства АЭС!
Рядом с основным корпусом электростанции – здание чуть поменьше. Здесь установлен реактор на быстрых нейтронах – прообраз будущих реакторов для станций большой мощности.
Как раз в этом здании я впервые встретился с О. Д. Казачковским.
В Обнинск я приехал после выступления академика Мстислава Всеволодовича Келдыша на одном из общих собраний АН СССР.
– Важнейшее значение имеют исследование и создание энергетических ядерных реакторов и, в частности, реакторов на быстрых нейтронах, – сказал он. – По мнению наших физиков, решение этой задачи обеспечит широкое применение ядерной энергии, необходимость использования которой для некоторых отдаленных районов нашей страны уже сейчас очевидна.
Реактор БР-5 показывали нам начальник установки инженер Дмитрий Самойлович Пинхасик и научный руководитель профессор Олег Дмитриевич Казачковский.
Как работает обычный реактор?
– Простите, а что вы подразумеваете под этими словами? – спросит меня любой читатель, хоть мало-мальски знакомый с атомной энергетикой.
Сейчас уже существует много самых разнообразных типов реакторов. Ученые выясняют их достоинства и недостатки, чтобы выявить преимущества тех или иных ядерных установок, подсказать направление, по которому следует идти в атомной энергетике. С некоторыми из таких новых реакторов мы еще познакомились в НИИАРе.
"Обычный" – уран-графитовый реактор, который с полным правом можно назвать сегодня "дедушкой".
Ведь именно уран-графитовый котел был возведен под трибунами чикагского стадиона. Реактор такого типа в нашей стране впервые был запущен Игорем Васильевичем Курчатовым…
Стержни, где находится уран-238, обогащенный изотопом уран-235, помещают в активную зону, окруженную толстым слоем графита. Быстрые нейтроны, образовавшиеся при делении урана-235, стремятся покинуть эту зону, но, попав в графит, сталкиваются с ядрами углерода и отражаются назад. При этом столкновении нейтроны теряют энергию и возвращаются уже замедленными. Оказавшись вновь в стержнях, они захватываются ядрами урана-235 и вызывают их деление.
Медленные нейтроны плохо захватываются ядрами урана-238. Так зачем же он нужен в реакторе, неужели только для того, чтобы быть своеобразным носителем своего более энергичного изотопа 235? Не совсем так.
Часть нейтронов в процессе цепной реакции не успевает замедлиться в графите и сохраняет высокую энергию. Эти быстрые нейтроны и «погибают» в уране-238, который превращается в уран-239. Ядра же этого изотопа быстро распадаются, после нескольких самопроизвольных превращений они рождают новый элемент – плутоний.
Впервые этот элемент был обнаружен в 40-х годах, так сказать, теоретически. И лишь после долгих поисков его удалось найти в природе, притом в минимальных размерах. Искусственно же, в ядерных реакторах, плутоний можно получать (и получают) в больших количествах.
Итак, в стержнях постепенно расходуется уран-235, а уран-238 «переходит» в плутоний. Но реакция не прекращается. Потому что плутоний по своим свойствам очень близок к урану-235. И теперь уже он начинает делиться, «выбрасывая» новые нейтроны. Казалось бы, так может продолжаться вечно. Однако в стержнях скапливаются отходы – различные элементы, которые хорошо поглощают нейтроны. Реакция постепенно как бы затухает: слишком много нейтронов пропадает. Нужно заменять стержни. Их меняют не все сразу. С «молодыми» соседствуют "старые". Смена идет по секциям. Это обеспечивает беспрерывную работу реактора.
Отслужившие стержни поступают на специальные предприятия, где облученный уран отделяется от плутония. Последний можно вновь использовать в качестве "горючего".
В активной зоне развивается очень высокая температура. Если через реактор пропустить, например, воду под большим давлением, то она нагреется, превратится в пар, который уже может вращать лопасти турбины, соединенной одним валом с генератором. Именно такая схема в первой атомной электростанции.
В реакторе есть специальные регулирующие стержни – обычно из кадмия или других материалов, которые хорошо поглощают нейтроны. Эти стержни вдвигаются, если поток нейтронов увеличивается, и выдвигаются, если он уменьшается.
…Постойте, разговор начался с быстрых нейтронов, с нового реактора БР-5, при чем здесь конструкция уранграфитового котла?
Описанный тип называется реактором на медленных нейтронах. Хотя, как мы уже видели, в нем рождаются и быстрые нейтроны, но непосредственного участия в цепной реакции они не принимают, пока не замедлятся до определенной энергии.
В таком реакторе очень плохо используется природный уран. Всего десятые доли процента. Несравненно большая его часть идет в отходы. А нельзя ли изменить положение? С этой целью советский ученый А. И. Лейпунский в 1949 году начал длительные и кропотливые исследования и пришел к выводу, что можно применять практически весь природный уран, но для этого необходимо построить реактор на быстрых нейтронах. Первый такой энергетический реактор (БР-1) появился в Обнинске в 1955 году. А мне Д. С. Пинхасик и О. Д. Казачковский спустя десять лет показывали уже реактор БР-5, который только что начал работать.
В его активной зоне нет замедлителя, да и по размерам он значительно меньше. Здесь «господствует» плутоний. Как только его масса достигает критической величины, начинается цепная реакция.
Активную зону окружает оболочка из природного урана, ядра которого энергично захватывают быстрые нейтроны. Уран постепенно превращается в плутоний.
При этом быстрых нейтронов «пропадает» значительно меньше, чем в уран-графитовом котле. Если там приблизительно из 100 нейтронов около 15 идет на образование плутония, то в быстром реакторе – около 50!..
В активной зоне чрезвычайно высокая температура.
Если ее не снижать искусственно, то или реактор выйдет из строя, или цепная реакция прекратится (это зависит от множества условий). Но чем охлаждать? Водой? При такой температуре и теплоноситель должен обладать сравнительно высокой точкой кипения. Если применить все-таки воду, для этого нужно гигантское увеличение давления, а значит, громоздкое оборудование.
К тому же это небезопасно. Где выход? Помог жидкометаллический теплоноситель – натрий, который кипит примерно при 900 градусах.
Реактор на быстрых нейтронах – это очередной шаг вперед в атомной энергетике. Но он требовал скрупулезных расчетов, большой изобретательности ученых и инженеров. И когда конструктивные трудности остались позади и первенец получил путевку в жизнь, стало понятно, почему в адрес его создателей посыпались многочисленные поздравления.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28