А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Следовательно, наблюдаемая при движении по таблице Менделеева периодичность свойств находит себе совершенно естественное объяснение. Различное число подуровней и, следовательно, различное число электронов, необходимых для заполнения той или иной оболочки, объясняет отмеченные выше вариации периода. Это объяснение изменения величины периода, характеризующего повторяемость химических свойств различных элементов, с помощью модели заполняющихся оболочек было предложено вначале Косселем, а затем более детально развито Бором, Стонером и Смитом.
Распределение электронов внутри отдельных оболочек и уровней тесно связано со структурой рентгеновских спектров. Действительно, согласно теории Бора их возникновение объясняется следующим образом. Пусть под влиянием каких-либо внешних причин один из электронов внутренней оболочки удален со своего уровня. Тогда в этой оболочке окажется одно свободное место, на которое теперь может перейти один из электронов внешней оболочки, обладающий, следовательно, большей энергией. Избыток этой энергии будет унесен испускаемым при таком переходе гамма-квантом. Это излучение и приводит к рентгеновским спектрам.
Таким образом, уже отсюда совершенно ясно, какое огромное значение для изучения внутреннего строения атома и структуры уровней играет детальное исследование и классификация этих спектров. В частности, можно сказать, что именно анализ рентгеновских спектров различных элементов позволил неопровержимо доказать справедливость важного принципа насыщения энергетических уровней, значение которого мы уже подчеркивали.
Гипотеза Бора о существовании квантовых энергетических уровней, а равным образом и его общая картина внутреннего строения атомов различных элементов хорошо подтвердились опытами по ударной ионизации. Явление ионизации при помощи удара, или ударной ионизации, состоит в отрыве одного из внутриатомных электронов в результате соударения атома с каким-либо другим телом, скажем, с другим атомом. При этом, чем глубже уровень, на котором находится электрон, тем большую энергию надо затратить для его удаления. Эта энергия носит название энергии ионизации данного атома. Представим себе пучок частиц с некоторой заданной энергией, падающий на газовую мишень. Тогда в результате соударений этих частиц с атомами газа будет происходить ионизация атомов, причем из них будут вырываться только те электроны, энергия ионизации которых меньше энергии падающих частиц, т е. при малой скорости падающих частиц электроны будут вырываться только с верхних уровней. Картина почти не будет меняться при увеличении энергии частиц, но только до тех пор, пока последняя не возрастет настолько, чтобы оказался возможным отрыв электронов, находящихся на следующем, более глубоком уровне. Так с ростом энергии постепенно будут вступать в игру все более и более глубокие уровни, причем картина будет носить ясно выраженный скачкообразный характер. Таким образом, эксперименты с ударной ионизацией позволяют в принципе определить расположение различных энергетических уровней.
Действительно, результаты опытов, поставленных Франком и Герцем, не только подтвердили существование энергетических уровней, но и оказались также в хорошем соответствии с данными о расположении этих уровней в различных атомах, полученными на основании спектроскопических измерений.

5. Критика теории Бора

Того, что было сказано в этой главе, вполне достаточно, чтобы понять все значение атомной теории Бора. Рождение ее ознаменовало новый важный этап в развитии современной физики. Уже с самого начала теория позволила понять природу атомных спектров и объяснить в общих чертах законы, которым они подчиняются. Дополненная затем общими правилами квантования, она приняла в каком-то смысле законченный вид и оказалась способной объяснить большое число новых явлений атомного мира.
Тем не менее, эта теория все же обладала некоторыми недостатками. Мы не собираемся говорить здесь о тех неудачах, которые постигли ее, например, при попытке Зоммерфельда объяснить наблюдаемую экспериментально тонкую структуру спектров или о противоречии с опытом, к которому после долгих вычислений пришел Крамерс, когда он хотел применить методы старой квантовой теории, чтобы теоретически определить потенциал ионизации нейтрального атома гелия. Хотя эти неудачи и не предвещали ничего хорошего, но речь пойдет не о них. Первоначальные концепции Бора встречают возражения гораздо более общего характера, свидетельствующие о неудовлетворительности старой квантовой теории. Остановимся в нескольких словах на наиболее существенных из этих возражений.
Прежде всего, теория Бора оказалась совершенно неспособной окончательно уточнить природу излучения, возникающего при переходах внутриатомных электронов из одного стационарного состояния в другое. Разумеется, она позволяет определить частоту излучения. Однако для полного описания процесса этого еще недостаточно. Необходимо знать также интенсивность излучения и его поляризацию. Но на эти вопросы теория Бора не дает никакого ответа. И в этом смысле она оказывается гораздо более несовершенной, чем классическая теория излучения. Бор отлично сознавал этот недостаток своей теории и попытался устранить его, предложив в 1916 г. известный принцип соответствия.
Но даже помимо этого у теории Бора есть еще слабые места. В частности, в ней одновременно используются чисто классические понятия и формулы и квантовые. Так, например, вначале внутриатомные электроны рассматриваются как материальные точки (как они понимаются классической механикой), движущиеся под действием кулоновых сил по вполне определенным орбитам, а атом представляется в виде миниатюрной солнечной системы чрезвычайно малых размеров. Затем в эту чисто классическую схему извне вводятся совершенно чуждые ей условия квантования и утверждается, что среди бесконечного многообразия различных траекторий, не противоречащих уравнениям классической динамики, устойчивы и физически реализуются лишь те из них, которые удовлетворяют условиям квантования.
Следовательно, изменение состояния атома может произойти лишь в результате внезапного перехода, сопровождаемого потерей энергии и излучением, описать который в рамках чисто классических представлений оказывается невозможно. В промежутках же между этими переходами атом находится в устойчивом состоянии, иначе говоря, в одном из стационарных состояний, где он как бы совершенно ничего не знает о существовании внешнего мира, ибо в противном случае по законам электродинамики он должен был бы непрерывно терять энергию на излучение электромагнитных волн. Все это уже никак не согласуется с классическими концепциями, служившими в определенной степени отправной точкой теории Бора. И очевидно, что подобную теорию, принимающую за основу совокупность определенных понятий, а в дальнейшем их начисто отвергающую, никак нельзя считать вполне удовлетворительной и внутренне непротиворечивой.
И наконец, вся эта динамическая картина, которая вначале была введена, все эти точечные электроны, описывающие некоторые траектории, в каждой точке которых они обладают вполне определенными значениями координат и скорости, оказались нужны лишь для вычисления энергии стационарных состояний и соответствующих спектральных термов. Причем только они могут быть сравнены с экспериментальными данными, полученными из спектроскопических измерений и опытов по ударной ионизации.
Не попытаться ли представить себе, что это описание, слишком подробное и искусственное, эти формы орбит и значения координат и скоростей электронов не соответствуют никакой физической реальности и только энергия стационарных состояний, которую в конце концов дает нам вся эта квантовая небесная механика, имеет реальный физический смысл?
Как это часто бывает, сам гениальный создатель квантовой теории атома первый заметил и подчеркнул слабости предложенной им теории. Он первый указал на искусственность планетарной модели, на своеобразие и новизну понятий стационарных состояний и переходов из одного состояния в другое и на невозможность последовательного введения этих понятий в обычных рамках пространства и времени и, наконец, на необходимость поисков новых путей, кардинально отличных от прежних. Его принцип соответствия указывал на одно из таких новых направлений. А несколько лет спустя один из учеников Бора, Вернер Гейзенберг, следуя идеям своего учителя, создал новую замечательную теорию квантов – квантовую механику.


Глава VII. Принцип соответствия

1. Трудность согласования квантовой теории и теории излучения

Электромагнитная теория, дополненная теорией электронов Лоренца, дает совершенно ясную и точную картину излучения, испускаемого системой движущихся зарядов. Если заданы структура и закон движения системы электрических зарядов, то можно точно вычислить частоты, интенсивности и поляризацию излучения. Для этого поступают следующим образом. Во-первых, в прямоугольной системе координат вычисляют компоненты вектора электрического момента системы, который в каждый момент времени определяется положением всех зарядов системы. Эти компоненты зависят от времени и по общим математическим теоремам о разложении в ряд или интеграл Фурье могут быть представлены в виде суммы (конечной или бесконечной), каждый член которой гармонически зависит от времени. Согласно электромагнитной теории система будет испускать излучение со всеми теми частотами, которые фигурируют в этом разложении Фурье. Кроме того, излучение одной из этих частот с электрическим вектором, параллельным одной из координатных осей, имеет интенсивность, которая определяется коэффициентом, соответствующим данной частоте в разложении Фурье, той компоненты электрического момента, которая параллельна рассматриваемой оси.
Этого достаточно, чтобы определить частоту, интенсивность и поляризацию излучения, испускаемого рассматриваемой системой.
Если электромагнитная теория Лоренца действительно применима к элементарным частицам электричества, то она должна позволить однозначно определить излучение, испускаемое атомом Резерфорда – Бора. Но, как мы уже видели, эта теория приводит к совершенно неправильным выводам. Действительно, поскольку атом должен все время терять энергию на излучение, электроны очень быстро упадут на ядро, а частота излучения будет непрерывно изменяться. Но тогда атом был бы нестабильным, и спектральные линии строго определенной частоты не могли бы существовать – абсурдный вывод.
Чтобы обойти эту основную трудность, Бор сделал предположение, что в стационарных состояниях атом не излучает. Это равносильно утверждению, что электромагнитную теорию излучения нельзя применять к электронам, движущимся по стабильным орбитам.
Порвав таким образом с электромагнитной теорией, квантовая теория атома оказалась совершенно не в состоянии объяснить свойства спектров излучения. Мы видели, каким образом Бору с помощью допущения, что каждый переход между квантовыми состояниями сопровождается испусканием кванта энергии излучения, удалось решить вопрос о частотах. Но это правило частот далеко не полностью описывает испускаемое излучение, оно ничего не говорит об интенсивности и поляризации. В 1916 г. Бор сумел отчасти восполнить этот недостаток, следуя очень странным и даже несколько непоследовательным путем. Этот путь состоял по существу в следующем: несмотря на неприменимость электромагнитной теории к внутриатомным явлениям, надо попытаться тем не менее установить определенное соответствие между квантовыми явлениями и формулами электродинамики с тем, чтобы понять, почему классическая электромагнитная теория дает прекрасное описание явлений большого масштаба. Таким образом, Бору удалось сформулировать удивительный принцип соответствия, сыгравший важную и благотворную роль в развитии квантовой теории.
Прежде чем перейти к рассмотрению принципа соответствия, мы должны строго очертить рамки той сложной задачи, решение которой пытался получить Бор. Необходимо ясно понимать, насколько различны представления о природе излучения классической теории, с одной стороны, и квантовой теории, с другой. Согласно классической теории движущийся в атоме электрон излучает целый набор частот. Классическое излучение, таким образом, происходит непрерывно и одновременно испускается свет разных частот. В квантовой теории, наоборот, атомный электрон, находящийся на стационарной орбите, не излучает. Когда же он перескакивает из одного состояния в другое, он испускает единственный квант монохроматического излучения: различные монохроматические излучения, испущенные группой атомов одного сорта (например, различные спектральные линии, испущенные одним элементом в газообразном состоянии), соответствуют, таким образом, переходам, которые происходят в разных атомах. Иными словами согласно квантовой теории, излучение спектральных линий какого-либо элемента есть процесс дискретный, происходящий в виде отдельных элементарных актов.
Пожалуй, трудно найти два других столь отличающихся друг от друга представления, как классическое и квантовое. Поэтому прежде всего следует спросить, можно ли вообще построить между ними какое-нибудь связующее звено.
Если мы подумаем, как установить соответствие между классической картиной спектрального излучения и столь не похожей на нее картиной, вытекающей из квантовых представлений, мы сразу же заметим, что это соответствие, если оно только возможно, может быть лишь статистическим. Действительно, соответствие с классической картиной нельзя, очевидно, установить иначе, как рассматривая одновременное испускание всех спектральных линий. Между тем с квантовой точки зрения испускание каждого кванта монохроматического излучения есть индивидуальный акт, и, чтобы получить одновременное испускание всех спектральных линий, нам придется рассмотреть ансамбль очень большого числа атомов одинаковой природы, ансамбль, в котором постоянно осуществляются индивидуальные переходы всех видов, приводящие к испусканию различных спектральных линий рассматриваемого элемента. Необходимое понятие об интенсивности различных линий можно также ввести в квантовую теорию, лишь рассматривая его статистически.
Квантовый атом, в котором происходит переход, испускает только один квант, единицу монохроматического излучения. Для такого индивидуального акта бессмысленно говорить об интенсивности излучения. Чтобы определить интенсивность, необходимо снова рассмотреть ансамбль, состоящий из большого числа одинаковых атомов. В таком ансамбле в секунду происходит большое число переходов всех видов. Рассматривая все переходы определенного вида и все кванты излучения одной и той же частоты, испускаемые при этих переходах, можно определить статистическое значение интенсивности как среднюю плотность этих квантов в пространстве. Эту интенсивность можно уже сравнивать с интенсивностью, вычисленной по классической теории.
Читатель, несомненно, начинает догадываться, как можно было бы установить требуемое соответствие. Рассмотрим, с одной стороны, ансамбль фиктивных атомов, подчиняющихся законам классической электромагнитной теории, а с другой – ансамбль реальных квантовых атомов. Попытаемся установить соотношение между частотами, интенсивностями и поляризацией излучения, испущенного каждым из этих двух ансамблей, таким образом, чтобы расчет спектра излучения первой системы хорошо известным методом классической электродинамики дал некоторые сведения об излучении второй системы, т е. об излучении реальных атомов. A priori ясно, что найти такое соотношение, конечно, нелегко. Однако необычайно проницательный ум Бора помог ему отыскать в этой труднейшей задаче, если не окончательное и вполне определенное, то по крайней мере предварительное решение, которое оказалось чрезвычайно полезным и полным глубокого физического содержания.

2. Принцип соответствия Бора

Сравним набор большого числа фиктивных атомов, которые подчиняются классическим законам, с набором такого же числа реальных квантованных атомов. Если нам известно, как движутся электроны в атомах первого типа, то мы знаем, как вычислить частоты, интенсивности и поляризацию испускаемого излучения. Теперь, воспользовавшись этими результатами, попытаемся выяснить, каковы частоты, интенсивности и поляризация излучения, испускаемого реальными атомами. Если бы мы ничего не знали об этих последних, то не существовало бы никаких средств решения этой задачи.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29