А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Такая нервная система в виде самостоятельного органа впервые появилась у гребневиков, животных, напоминающих медуз, и достигла вершины развития у плоских червей. У них все клетки собраны в нервные тяжи, которые, многократно пересекаясь, покрывают реденькой сетью все тело червя.
Нервная система в виде сети нервных стволиков – значительное достижение эволюции. Но, пойдя по этому пути, природа оказалась бы в тупике. Такая нервная система слишком сложна и громоздка и сама нуждается в руководящем органе.
Верховный командный центр нервной системы впервые появился у наиболее развитых плоских червей. В местах пересечений нескольких крупных стволиков у них возникли утолщения – ганглии, скопления нервных клеток. Ганглии в первую очередь образуются вблизи органов чувств и важнейших органов тела: глаз, органа равновесия, глотки. Постепенно к ним переходит верховная власть.
Нервная система, построенная из ганглиев, оказалась удачной. У кольчатых червей, которые, по-видимому, произошли от плоских, все нервные клетки собраны в ганглии, а в нервных стволах, их соединяющих, проходят лишь отростки этих клеток. В каждом членике червя находится пара ганглиев, соединенных перемычками между собой и с ганглиями соседних члеников тела и посылающих нервы к ближайшим органам. Первая пара бывает самой крупной и выполняет наиболее сложную работу, так как именно сюда поступает важнейшая информация от зрительных и обонятельных анализаторов, а также органов равновесия.
Первые ганглии держат в известном подчинении всю остальную часть нервной системы. Они прообраз головного мозга высших животных. У некоторых видов высших кольчатых червей все ганглии сблизились между собой, составляя единое компактное образование. Такая нервная система отчасти напоминает мозг низших позвоночных животных. У ланцетника, одного из самых примитивных представителей хордовых животных, она имеет вид однородной нервной трубки. Головного мозга у него нет. Все остальные представители позвоночных, стоящие на эволюционной лестнице выше ланцетника, им обладают.
У миног и миксин в головном мозге можно различить все основные отделы. Сохраняя в самых общих чертах единый план строения от миноги до человека, все отделы мозга претерпевают значительное развитие.
Наиболее интенсивно эволюционирует передний, или, как правильнее называть, конечный мозг. У миног, миксин и настоящих рыб конечный мозг занят лишь анализом сведений, добытых с помощью обоняния. Правда, самые новейшие исследования показали, что и другие органы чувств, в том числе глаза, шлют сюда какую-то информацию, но только не о том, что видят. Возможно, глаза доводят до сведения конечного мозга лишь сам факт поступления новой информации, не раскрывая ее содержания. Остальные органы чувств отправляют сообщения, каждый в особый отдел головного мозга, которые недостаточно хорошо связаны между собой. В таком мозгу не развита способность комплексно обрабатывать всю поступающую информацию.
У амфибий и особенно у рептилий все больше и больше сведений начинает поступать в конечный мозг. Он становится средоточием всех высших психических функций.
Особенно серьезные изменения претерпевает мозг млекопитающих. У них также главным образом развивается конечный мозг, в первую очередь кора больших полушарий. Уже у самых низших млекопитающих для всех видов чувствительности в коре намечаются анализаторные зоны, хотя они еще усердно помогают друг другу. По мере эволюции помощь постепенно сокращается, и у высших млекопитающих каждая анализаторная зона получает информацию только об одном виде раздражителей.
Важный этап эволюции – возникновение в мозгу грызунов и близких к ним животных крохотных зон, которые в анализе показаний рецепторов непосредственного участия не принимают. В эти участки попадает информация, уже прошедшая обработку в других отделах коры, поэтому они называются вторичными, или ассоциативными зонами. Здесь совместно обрабатывается информация от различных анализаторов.
Ассоциативные отделы коры развиваются наиболее бурными темпами. У хищных животных, собак и кошек они уже имеют существенные размеры. В коре обезьян эти зоны перекрытия – так их тоже принято называть – занимают четвертую или даже третью часть, а у человека – подавляющую часть коры, оставляя для анализаторных зон лишь незначительные по размерам участки. Именно деятельность ассоциативных областей коры больших полушарий обеспечивает выполнение высших функций нашего мозга. Они-то и делают нас людьми.

Кирпичики

Очень бегло рассказав о постепенном развитии и усложнении мозга, я хочу вновь вернуться на первую ступеньку, чтобы рассмотреть эволюцию высших функций мозга. Но сначала несколько слов об условном рефлексе.
Широко известно, что до И.П. Павлова никто толком не знал, как изучать высшие функции мозга, а посему никто за это и не брался. Ведь изучать предстояло физиологию психических актов. Естественно, что для начала желательно было исследовать наиболее простой психический акт. Павлову с первых же шагов удалось взять быка за рога. Он сумел придумать метод изучения мозга, нашел элементарнейшее психическое явление, которое одновременно оказалось и физиологическим явлением – условным рефлексом, тем универсальным кирпичиком, из которых строится все здание мыслительной деятельности.
В наши дни трудно встретить человека, не знакомого с учением И.П. Павлова об условных рефлексах. Это дает мне возможность повторить лишь самое основное.
Условные рефлексы не передаются по наследству, а вырабатываются в индивидуальной жизни. Для этого необходимо совпадение во времени действия как минимум двух раздражителей. Лучше, если первый будет безразличен для животного, зато второй должен вызывать какую-нибудь реакцию. При их повторных сочетаниях временная связь между нервными элементами, воспринимающими первый раздражитель, и мозговым центром того рефлекторного акта, который вызывается вторым, замыкается, и вырабатывается условный рефлекс.
К сожалению, я должен констатировать, что ученые, занимающиеся исследованием высших функций мозга, до сих пор не знают интимный механизм образования условных рефлексов, место локализации их в мозгу.
И среди людей, далеких от биологии, и в среде физиологов, занимающихся изучением нервной системы, всегда находится немало скептиков, которые не могут представить себе, что все сложное здание мыслительной деятельности строится из таких простых элементов, как условный рефлекс. Я мог бы напомнить неверующим, что большинство величайших творений зодчих построено из простого кирпича, а одно из семи чудес света – висячие сады Семирамиды даже из кирпича необожженного. Так что на этот аргумент вряд ли стоит обращать внимание. Однако, если быть объективным, следует сказать, что скептики правы, если они имеют в виду временные связи, подобные секреторным условным рефлексам собак, особенно интенсивно изучаемым в павловских лабораториях.
Суть ошибки в том, что временных связей великое множество и все они, оставаясь элементарнейшим явлением психической деятельности, сильно различаются между собой по сложности и совершенству. Здание мыслительной деятельности человека строится из лучшего строительного материала. О совершенствовании стройматериалов и улучшении строительной техники и пойдет здесь речь.
Даже самых примитивных одноклеточных животных можно кое-чему научить. Пустив инфузорию туфельку в мини-водоем, целиком помещающийся в поле зрения микроскопа, у нее можно выработать условную реакцию остановки на границе света и тени, если за переход в затемненную часть бассейна всякий раз «наказывать» ударом тока. Кстати, о том, что у инфузорий есть память, первым догадался барон Мюнхгаузен. Иммерман, обработавший его воспоминания (книга была опубликована у нас в 1838 году, за 65 лет до работ И.П. Павлова!), приводит следующее высказывание барона: «Я нашел, что инфузории, быт которых, между прочим, занимает меня в последнее время, представляют собой, в сущности, недоразвившихся карпов и обладают памятью». Редкий случай, когда отъявленный враль оказался прав, во всяком случае наполовину.



Образовавшийся у инфузории навык не условный рефлекс. Вырабатывается он с большим трудом, а сохраняется очень недолго. Через несколько минут, самое большее полчаса, туфелька все забудет. Чтобы восстановить навык, нужно повторить всю длительную процедуру опыта. Сама она никогда не вспомнит, что на темную половину заплывать опасно. При образовании такой реакции никакого замыкания не происходит. У туфелек просто не в чем замыкаться временным связям, ведь весь организм инфузории одна не очень крупная клетка.
Механизм этой реакции иной: понижение возбудимости (а следовательно, и двигательной активности) под влиянием темноты. Сходными формами нестойкой памяти пользуемся и мы. Она очень удобна для оперативной деятельности типа устного счета, когда на несколько десятков секунд надо удержать в памяти исходные числа, чтобы произвести с ними арифметические действия. Уже через 5–10 минут, а иногда и раньше, мы их полностью забудем.
Естественно, возбудимость может не только повыситься, но и понизиться. Инфузорию стилонихию пугает вибрация. Если дотронуться до поверхности мини-водоема, где ползают стилонихии, они все разом остановятся и на мгновение съежатся. Пугнем инфузорий 10–15 раз подряд. Движение воды в аквариуме – первый признак приближающейся опасности. В нашем опыте вибрация многократно повторяется, но ничего неприятного за ней не следует. Поэтому каждое очередное воздействие начинает вызывать снижение возбудимости. Стилонихии съеживаются все меньше и меньше и наконец совершенно перестают обращать внимание на «запугивания» экспериментатора. На Западе этот вид обучения называют привыканием.
Появление нервной системы на первых порах не внесло ничего нового. Крохотное примитивное существо – пресноводная гидра отвечает на удар электрического тока сокращением своего туловища-стебелька и щупалец. Если удар тока систематически предварять вспышкой, то вскоре один свет будет заставлять гидру съеживаться в комочек. Но и это еще не настоящий условный рефлекс, а скорее суммационный. Удар электрического тока оставляет после себя на некоторое время повышенную возбудимость нервной системы. Действие следующего, суммируясь с предыдущим, еще больше увеличивает возбудимость. После нескольких электрических ударов, следующих друг за другом с короткими интервалами, возбудимость может настолько возрасти, что любой слабый раздражитель, например свет, окажется способным вызвать оборонительную реакцию. Поэтому сочетать свет и удары электрического тока не обязательно, хотя это и помогает проявлению суммационного рефлекса.
Подобные реакции, возникающие в течение жизни животных, являются высшим достижением психической деятельности для плоских червей – планарий, для дождевых червей, а в ряду хордовых – для ланцетников.
Способность к образованию настоящих условных рефлексов впервые возникает у высших кольчатых червей – полихет, а в ряду позвоночных – у рыб. Главная особенность условных рефлексов, резко отличающая их от примитивных временных связей низших животных, – феномен замыкания, то есть функциональное объединение нервных центров. В обычном условном рефлексе нейроны, к которым приходит информация о действии условного раздражителя, функционально объединяются с центром безусловного раздражителя. Например, при образовании пищевого условного рефлекса на звук звонка у животного замыкается связь между звуковым анализатором и пищевым центром.
Нетрудно заметить, что в выработанных реакциях животных отражены закономерности, существующие в окружающей среде. Падают с дерева капли, но за ними не следует ничего более неприятного – у стилонихий вырабатывается реакция привыкания, они перестают обращать внимание на микросотрясения. Простая закономерность: падение капли не предвещает опасности. Получает собака еду каждый раз, как прозвучит звонок, условный рефлекс отражает закономерную связь сигнала о появлении пищи с самой пищей. Еще одна особенность: в образованных реакциях могут получить отражение лишь закономерности, имеющие для животного непосредственное значение.
Условный рефлекс можно выработать не только на такие простые раздражители, как звонок или вспышка света, но и на более сложные, комплексные воздействия. Попробуем, например, использовать для образования рефлекса одновременное действие трех раздражителей – зрительного (мигание света), звукового (звонок) и кожного (легкое покалывание кожи). В ответ на сложный сигнал наши подопытные должны потянуть за кольцо, и за это получат: черепаха – листик салата, собака – кусочек мяса. Условный рефлекс одинаково легко выработается у обоих животных. Разница только в том, что черепаха будет реагировать на любой отдельно взятый компонент, а собака – только на комплекс. Это значит, что для собаки он стал особым светозвукокожным раздражителем, отличным от действия каждого из трех входящих в него компонентов.
Механизм явления понятен: одновременное действие компонентов комплекса привело к образованию временных связей между нервными центрами, к которым эти раздражители адресуются. У рыб, амфибий и рептилий временные связи между компонентами сложных раздражителей еще не образуются.
Ученые заинтересовались, а не могут ли возникнуть у высших животных временные связи, если просто сочетать вспышки света и звучание звонка, не сопровождая эту процедуру дачей пищи. Оказывается, образуются, хотя и не очень прочные.
Новый кирпичик – новая временная связь (ее называют ассоциацией) на первый взгляд кажется небольшой прибавкой. На самом же деле появление нового строительного материала стало переломным моментом, переходом от мышления низших существ к мыслительной деятельности высших животных и человека. В таких ассоциациях получают отображение любые закономерности внешнего мира, в том числе и не имеющие для животного непосредственного значения. Следовательно, эти кирпичики позволили заложить фундамент безграничного познания окружающего мира.
На основе подобных ассоциаций у человека развилась речь, или, как говорят физиологи, вторая сигнальная система, так как слова являются сигналами простых сигналов, любых явлений, которые воспринимаются нашими органами чувств.
Вторая сигнальная система – это и новый, наиболее совершенный строительный материал, и, что еще важнее, новый принцип кодирования и обработки получаемой информации. Вторая сигнальная система позволяет формировать понятия, использовать логический принцип, тем самым вскрывая более сложные, скрытые закономерности окружающей действительности, и создавать науку.
После создания Ч. Дарвином теории эволюции у ученых появился большой соблазн проследить историю развития человеческого интеллекта. Одна из первых попыток принадлежит Роменсу, другая – Гаше-Супле. Сейчас они вызывают только улыбку.
Лестница, построенная Роменсом, интересна как попытка найти ступеньки, общие для животных разного уровня развития и детей разного возраста, то есть сравнить интеллект ребенка и животного. Свой ряд он начинает с морских ежей, морских звезд и ребенка в возрасте одной недели. Их интеллект, по Роменсу, исчерпывается способностью получать удовольствие или страдание и в развитии памяти.
Насекомые, пауки и десятинедельные дети способны удивляться, бояться, а членистоногие еще и узнавать свою молодь. Высшие насекомые и дети в 3,5 месяца обладают разумом, способны ревновать, сердиться и играть.
Птицы и восьмимесячные дети обладают гордостью, признательностью, способностью создавать образы, видеть сновидения и эстетически любить. Низшие обезьяны, слоны и годовалые дети приобретают мстительность, умеют соблюдать обычаи и способны к забвению. Наконец, человекообразные обезьяны, собаки и начинающие говорить дети испытывают стыд, угрызения совести, чувство смешного и способны к обману.



Будем снисходительны к Роменсу. Он был пионером. Жаль только, что мы никогда не узнаем (а в трудах Роменса об этом ничего не сказано), почему приобретение способности гневаться, мстить и обманывать свидетельствует о развитии интеллекта. Казалось бы, наоборот! Или о чем говорит способность видеть сновидения? Еще интереснее, откуда он узнал, что пауки способны удивляться, а собаки испытывать угрызения совести.
Лестница Гаше-Супле более научна. Он пытается определить уровень развития на основе способности к дрессировке. Самым низшим животным присуще только возбуждение. На следующем этапе появляется способность подчиняться принуждению, затем воздействию человека, наконец, более сложному и полному воздействию и так далее.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30