А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Отдельные ветви симметрично расположены по отношению к стволу, а форма конуса способствует рациональному использованию кроной светового потока солнечной энергии, увеличивает устойчивость. Таким образом, благодаря притяжению и законам естественного отбора ель выглядит эстетически красиво и «построена» рационально. Внешняя симметрия насекомых и животных помогает им держать равновесие при движении, извлекать максимум энергии из окружающей среды и рационально ее использовать.
В физических и химических системах симметрия приобретает еще более глубокий смысл. Так, наиболее устойчивы молекулы, обладающие высокой симметрией (инертные газы). Симметрия молекул определяет характер молекулярных спектров. Высокая симметрия характерна для кристаллов. Кристаллы – это симметричные тела, их структура определяется периодическим повторением в трех измерениях элементарного атомного мотива.
Асимметрия также широко распространена в мире.
Внутреннее расположение отдельных органов в живых организмах часто асимметрично. Например, сердце расположено слева у человека, печень – справа и т. д. Л. Пастер, французский микробиолог и иммунолог, выделил левые и правые кристаллы винной кислоты. Молекула ДНК асимметрична – ее спираль всегда закручена вправо. Все аминокислоты и белки, входящие в состав живых организмов, способны отклонять поляризованный луч света влево.
В отличие от молекул неживой природы, где левые и правые молекулы встречаются часто, то есть носят в основном симметричный характер, молекулы органических веществ характеризуются ярко выраженной асимметрией. Придавая большое значение асимметрии живого, В. И. Вернадский предполагал, что именно здесь проходит тонкая граница между химией живого и неживого. Л. Пастер также, основываясь на этих признаках, провел границу между живым и неживым. Следует также отметить, что живые организмы (растения) в процессе жизнедеятельности поглощают из окружающей среды (почвы) в значительной степени химические соединения минеральной пищи, молекулы которой симметричны и в своем организме превращают их в асимметричные органические вещества: крахмал, белки глюкозу и т. д. Симметрия молекул пищевых веществ живого организма согласуется с симметрией молекул самого организма. В противном случае пища будет несовместимой (ядовитой).
Структура компонентов клетки также асимметрична, что имеет большое значение для ее обмена веществ, энергетической обеспеченности, а также способствует более высокой скорости протекания биохимических реакций.
Симметрия и асимметрия – это две полярные характеристики объективного мира. Фактически в природе нет чистой (абсолютной) симметрии или асимметрии. Эти категории – противоположности, которые всегда находятся в единстве и борьбе. Там, где ослабевает симметрия, возрастает асимметрия, и наоборот. На разных уровнях развития материи ей свойственна то симметрия, то асимметрия. Однако эти две тенденции едины, а их борьба носит абсолютный характер. Эти категории тесно связаны с понятиями устойчивости и неустойчивости систем, порядка и беспорядка, организации и дезорганизации, отражающими свойства систем и динамику развития, а также взаимосвязь между динамическими и статическими законами.
Полагая, что равновесие есть состояние покоя и симметрии, а асимметрия приводит к движению и неравновесному состоянию, можно считать, что понятие равновесия играет в биологии не менее важную роль, чем в физике. Принцип устойчивости термодинамического равновесия живых систем характеризует специфику биологической формы движения материи. Именно устойчивое динамическое равновесие (асимметрия) является ключевым принципом постановки и решения проблемы происхождения жизни.
8.3. Самоорганизация природы (понятие синергетики)
Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. Один из двух типов случайностей имеет направленный, созидательный и эволюционный характер, а второй создает неопределенность и играет деструктивную роль, отсекая все то лишнее и ненужное, что не укладывается в рамки фундаментальных законов и принципов бытия. Вследствие такого совместного действия возникает неустойчивость в системе, которая может служить толчком к возникновению из беспорядка (хаоса) определенных новых структур. Последние при благоприятных условиях переходят во все более устойчивые и упорядоченные аттракторы (от лат. attractio – притяжение). В дальнейшем их самопроизвольное (спонтанное) образование идет за счет внутренней перестройки самой системы и согласованного кооперативного взаимодействия всех ее частей и элементов в соответствии с требованиями окружающей среды. Самоупорядочивание системы всегда связано со снижением энтропии в ней. Случайность и дезорганизация на атомно-молекулярном уровне здесь выступают в качестве созидающей силы, которая упорядочивает состояние системы уже на макроуровне и объединяет ее элементы в единое целое. Это явление получило название самоорганизации.
Следовательно, самоорганизация – это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим.
Таким образом, возникающая из хаоса упорядоченная структура (аттрактор) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В результате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры. На такой концепции построена модель универсального эволюционизма, где дарвинское учение об изменчивости, наследственности и естественном отборе получило фундаментальное методологическое обоснование. Изменчивость окружающего мира обусловливается случайностью и неопределенностью как фундаментальным свойством материи. Наследственность, от которой зависит настоящее и будущее, определяется прошлым. Степень зависимости от прошлого определяется «памятью» системы, которая теоретически может принимать значения в диапазоне от нуля (хаотические образования) до максимально бесконечной величины (жесткие причинно обусловленные системы). Однако реальные системы имеют некоторый небольшой диапазон «памяти», определяемый уровнем их организации. Изменчивость дает возможность появиться многообразию различных вариантов развития систем, но наследственность значительно ограничивает их число. Она отбирает только жизненные, наиболее целесообразные и устойчивые в сложившейся обстановке структуры, устраняя при этом все нежизненные и неустойчивые.
Прошедшие отбор и передающиеся по наследству жизненные структуры постепенно под влиянием важных факторов накапливают определенные количественные изменения, что ослабляет их динамическую устойчивость (гомеостаз). Эти количественные изменения могут перейти в качественные путем скачка. При этом система на некоторое время оказывается в неустойчивом, флуктуационном состоянии, теряет «наследственную память». Характер ее последующего развития будет определяться случайными, непредвиденными факторами, действующими в это время на систему. При этом у системы для выхода из флуктуации есть только два пути: либо деградация и разрушение, либо самоорганизация, усложнение и эволюция. Подобный сценарий развития материи идет на всех ее структурных уровнях как череда сменяющих друг друга постоянных изменений. Таким образом, порядок и беспорядок, организация и дезорганизация выступают как диалектическое единство, их взаимодействие поддерживает саморазвитие системы.
Однако самым трудным положением самоорганизации являются вопросы, как получается, что система самопроизвольно переходит из состояния хаоса как наиболее вероятного с энергетической точки зрения в состояние порядка, менее вероятного и менее выгодного (как требующего более высокой энергии); как и благодаря чему происходит ее самоорганизация (самоупорядочение). Пока еще в современной науке на эти вопросы ответа нет.
Следует отметить, что в научном мире и в научной литературе одни авторы используют термин «самоорганизация», а другие – «синергетика» (от греч. synergeia – сотрудничество, содружество). Фактические значения слов «самоорганизация» и «синергетика» существенно различаются, но их концептуальный смысл одинаков. Синергетика – область научных исследований коллективного поведения частей сложных систем, связанных с неустойчивостями и касающихся процессов самоорганизации. Синергетика – это теория самоорганизации систем различной природы, предметом которой они являются.
Сама идея самоорганизации (синергетики) имела место еще в классической науке XVIII–XIX вв. Это космогоническая гипотеза Канта– Лапласа, теория эволюции Ч. Дарвина, теория поведения термодинамических систем Максвелла-Больцмана. Однако лишь только в 70-е гг. XX в., когда были накоплены большой теоретический материал и практический опыт, появилась возможность детального исследования открытых, неравновесных систем, анализа и описания механизмов и закономерностей их развития. Основные положения теории синергетики разработаны в трудах Г. Хакена, Г. Николиса, И. Пригожина в 70-х гг. XX в. Сам термин «синергетика» в научный обиход ввел Г. Хакен, немецкий физик, профессор Штутгартского университета. Большую роль в становлении теории самоорганизации сыграли работы наших соотечественников: В. Вернадского, Б. Белоусова, В. Жаботинского, А. Руденко, Ю. Климантовича, А. Колмогорова. Современное естествознание идет по пути теоретического моделирования сложнейших природных систем, способных к саморазвитию и самоорганизации.
На идеях синергетики сформировалось современное миропонимание. Природа сквозь призму синергетики предстает как развивающаяся, нелинейная, открытая сложноорганизованная иерархическая система. Учитывая, что в природе и обществе существует огромное количество реальных систем, которые подчиняются законам синергетики, необходимо понять, что создание синергетической картины мира по сути своей является научной революцией, по своему статусу сравнимой с открытием строения атома, созданием генетики и кибернетики. Идеи синергетики стали основой для сближения традиционной европейской мысли об уровнях организации материи с идеями древней восточной философии о глобальной взаимосвязи и взаимозависимости всего сущего, о взаимодействии потенциального и реального.
8.4. Основные свойства самоорганизующихся систем
Открытые системы
Основным понятием термодинамики является понятие энтропии как меры способности теплоты к превращению. Энтропия характеризует меру внутренней неупорядоченности системы. Она свойственна изолированным, то есть закрытым системам, находящимся в тепловом равновесии с окружающей средой. По отношению к закрытым системам были сформулированы и два закона (начала) термодинамики.
Качественное отличие закрытой (замкнутой) системы от открытой в том, что в первой тоже может сохраняться неравновесная ситуация, однако до тех пор, покуда система за счет своих внутренних процессов не достигнет равновесия, при котором энтропия будет максимальной. Иное дело в открытых системах, которые обмениваются энергией с окружающей средой. Здесь за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией. Иначе говоря, система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы «сбрасывает» ее избыток, возрастающий за счет внутренних процессов, в окружающую среду. В живых организмах это происходит за счет дыхания, экскреции. Открытая система как бы «питается» отрицательной энтропией (негэнтропией), выбрасывая наружу положительную. При этом возникают новые устойчивые неравновесные, но близкие к равновесию состояния. При таком неравновесии рассеивание энергии минимально и интенсивность роста энтропии оказывается меньше, чем в других близких состояниях. Здесь имеет место принцип производства минимума энтропии. Открытые системы – это необратимые системы. Для них весьма важен фактор времени.
Принцип производства минимума энтропии
В энергетических процессах открытых систем имеет место принцип Пригожина—Гленсдорфа – принцип производства минимума энтропии. Здесь под производством энтропии понимают отношение изменения энтропии dS к единице объема системы. Производством энтропии по этому принципу можно определить степень упорядоченности. Как известно, изменение энтропии выражается уравнением
dS = dSi + dSe,
где dS – полное изменение энтропии в системе; dSi – изменение энтропии, связанное с происходящими внутренними необратимыми процессами в системе; dSe – энтропия, перенесенная из внешней среды через границы системы.
Из уравнения следует, что в изолированной системе энтропия dSe равна нулю, а внутренняя энтропия dSi > 0, так как dSe может компенсировать dSi, произведенную внутри системы, или быть больше ее. Из этого следует, что dSe < 0. Таким образом, энтропия в систему не поступает, а только может из нее выводиться. Условие dS =0 означает стационарное состояние, а dS < 0 – усложнение и рост системы. Изменение энтропии при этом соответствует соотношению dSe < dSi. Соотношение показывает, что энтропия, обусловливаемая необратимыми процессами внутри системы, выносится в окружающую среду.
Свой принцип И. Пригожин и П. Гленсдорф выразили следующим образом: при неравновесных фазовых переходах, что соответствует точкам бифуркации, через которые проходит процесс самоорганизации, система движется по пути, соответствующему меньшему значению производства энтропии. Значит, чем меньше производство энтропии, тем более организованна система. В этом главный смысл процесса самоорганизации, то есть в создании определенных структур из хаоса неупорядоченного состояния. Открытые системы будто бы структурируют энергию окружающей их среды, причем упорядоченная часть энергии остается внутри системы, а неупорядоченная энергия сбрасывается системой обратно в окружающую среду.
Таким образом, неравновесный термодинамический процесс создает условия для состояния, когда приток энергии извне не только компенсирует (гасит) рост энтропии, но и снижает ее количество.
Нелинейные системы (нелинейность)
Открытый характер большинства природных систем указывает на то, что в мире должны доминировать не равновесие и стабильность, а неустойчивость и неравновесность. Сама неравновесность порождает избирательность системы, ее специфические реакции на воздействия внешней среды. Тесная связь со средой отражается на функционировании систем; они как бы приспосабливаются к внешним условиям. Например, слабые воздействия среды могут оказывать большее влияние на эволюцию системы, чем более сильные, но не гармонирующие с тенденцией развития системы. Отсюда следует, что на нелинейные системы не распространяется принцип суперпозиции, то есть когда действие двух факторов на ситуацию вызывает эффект, который не имеет ничего общего с результатами отдельного действия каждого фактора. В нелинейных системах развитие идет по нелинейным законам, приводящим к многовариантности путей выбора и альтернатив выхода из состояния неустойчивости.
В нелинейных системах процессы могут носить резко пороговый характер, когда при постепенном изменении внешних условий наблюдается скачкообразный их переход в другое качество. При этом старые структуры разрушаются, переходя к качественно новым структурам.
Неравновесные, открытые нелинейные системы постоянно создают и поддерживают неоднородность в среде. Здесь между средой и системой могут создаваться отношения положительной обратной связи, которые еще более усиливают отклонения системы от равновесия. В результате такого взаимодействия открытой системы со средой могут наблюдаться самые неожиданные последствия.
Неравновесная термодинамика
Классическая термодинамика (закрытые системы) утверждает, что рост энтропии означает необратимость термодинамического процесса. Поэтому, если считать Вселенную закрытой системой, то с точки зрения второго закона термодинамики в ней постепенно произойдет выравнивание температур и установится полное равновесие, что соответствует «тепловой смерти» Вселенной. Энтропия будет расти и вместе с ней станет возрастать степень хаоса.
Эти утверждения не согласуются с гипотезой возникновения Вселенной и со всем дальнейшим ходом глобального эволюционного процесса.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40