А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Вот эти-то факты и позволяют нам с успехом заменить историю в прямом смысле тем материалом, какой дают нам сравнительная анатомия и сравнительная физиология животных. Действительно, во всех тех случаях, когда мы можем сличить показания обоих источников, они безукоризненно сходятся между собой и подкрепляют друг друга. Итак, обратимся к тому, что обе эти сравнительные науки могут рассказать нам о происхождении и развитии движений на Земле. Этому очерку предпошлем две сводки, которые очень помогут нам приблизиться к пониманию изучаемого предмета.
Масштаб и действующие лица
Начнем с масштаба. По счету геологов, земля существует на свете около двух миллиардов лет; жизнь на Земле, начиная от самых простейших ее форм, — около половины этого времени. Обе эти цифры ничего не говорят нашему воображению. Попробуем представить дело иначе.
Чтобы получить практически выполнимое и обозримое изображение земли — географическую карту, ее чертят с уменьшением по отношению к подлинным размерам в 10, 50, 100 миллионов раз. Вычертим историю матери-Земли в масштабе 1 : 50 000 000. В этом масштабе столетие почти в точности равно одной минуте. Продолжительность человеческой жизни — 40 — 45 секунд.
Итак, прежде всего на нашем чертеже Земле 40 «лет». На ее лице немало морщин — великих горных цепей и седин белоснежной Арктики или Антарктиды. Их, может быть, больше, чем следовало бы иметь к 40 «годам», но надо признать, что жизнь выпала ей не из легких: вся история великих геологических переворотов, смены гор и морей, вулканической деятельности и т. д. хорошо подтверждает это. В пору же зачатия первых проблесков жизни мы рисуем себе Землю на нашей карте двадцатилетней женщиной — в лучшем возрасте для деторождения.
Если теперь сделать набросок последовательности развития наиболее близких к нам животных — позвоночных — в выбранном нами масштабе, то окажется, что древнейшие представители позвоночных — ископаемые рыбы — появились на Земле в середине общего срока жизни животного мира — около 10 «лет» назад.

Два-четыре «года» назад на земном шаре господствовали пресмыкающиеся — гигантские ящеры, о которых еще будет речь дальше.
Самые древние из млекопитающих возникли не более 2 — 3 «лет» назад; Земля родила их уже очень пожилой женщиной, проняньчив все самое цветущее десятилетие своей жизни одних только беспозвоночных, червей и моллюсков. Высшие млекопитающие — хищные, хоботные, высокоразвитые копытные и т. п. — существуют всего едва лишь несколько «месяцев». «Недели» две назад появились высшие обезьяны. Древнейшим представителем человека, достойным этого имени, не более «недели» от роду. Как ничтожны все эти последние сроки по сравнению с общим возрастом жизни на земле! «Вчера» или «позавчера» (150 000 — 300 000 лет назад) на Земле случилась плохая погода: похолодало, обширные равнины оковались льдом, прошла волна того, что наука называет «ледниковыми периодами». И тогда же — «день» или два назад — объявился и пещерный человек древнекаменного века, сражавшийся каменными топорами и бережно хранивший в своих пещерах случайно найденный где-либо огонь. Древнейшие из исторических документов в прямом смысле этого слова — египетские и ассирийские надписи, великие пирамиды, истоки истории китайцев — создались «час» с небольшим назад. Христианской эре — около 20 «минут», открытию Америки и возрождению наук после страшного средневекового застоя — 4 — 5 «минут». Наша мысль вникает в существо вещей и в историю 40 «лет» бытия Земли не долее этих 5 «минут». Можно ли требовать, чтобы за этот срок она могла успеть очень уж многое сделать?

Вторая сводка, на которую мы должны будем опереться, — это табличка крупных классов, на которые наука подразделяет животное царство, от древнейших и простейших до самых высших по своему развитию животных. Перечислим эти классы по порядку, с тем чтобы далее задержаться на них более обстоятельно.
1. Простейшие — одноклеточные, микроскопически малые животные.
2. Кишечнополостные (например, коралловые полипы, голотурии, губки, морские лилии).
3. Иглокожие (например, морская звезда).


Классы 2-й и 3-й — округло-симметричные, малоподвижные существа.
Из класса 2-го многие ведут полностью образ жизни растений, всю жизнь произрастая на одном месте. У класса 2-го пищеварительная полость имеет еще вид мешка, и они пользуются как для питания, так и для испражнения одним и тем же отверстием. Класс 3-й имеет уже сквозной пищеварительный канал.
4. Черви (например, дождевой червь, пиявка, ленточная глиста).
5. Мягкотелые, или моллюски (например, улитка, каракатица, устрица).

Классы 4-й и 5-й имеют продолговатую форму тела, с ротовым (головным) и хворостовым концом. Тела их обнаруживают члениковое (сегментарное) строение, особенно четко выраженное у червей. Как показывает само название мягкотелых, они лишены каких-либо скелетов, и все что есть жесткого в их теле — это только переносные домики-раковины. Медлительность их вошла в поговорку.
6. Членистоногие (насекомые, раки, пауки, сороконожки).
7. Позвоночные (рыбы, лягушки, ящерицы, птицы, звери). Два последних класса очень резко отличаются от всех предыдущих.
Они имеют суставчатые, подвижные скелеты, настоящие конечности; они способны к быстрым и сильным движениям; наконец, одни они (если не считать только еще некоторых моллюсков) могут считаться обладателями настоящей центральной нервной системы — головного мозга.
Возникновение жизни и возбудимости
Теперь, вооруженные основной классификацией и масштабом, обратимся к самой истории движений в животном царстве. Попытаемся восстановить перед глазами бесконечно удаленное прошлое, как говорят, сделать его реконструкцию, подобно тому, как археологи воссоздают в виде макетов и рисунков древние, давно сметенные с земли города или здания. Если даже в подобной реконструкции какого-нибудь старинного храма в Перу или усыпальницы в Вавилоне больше воображения, чем документальных фактов, мы готовы простить это ученому за убедительность и правдоподобие. За нашу реконструкцию мы гораздо более спокойны: она надежно покоится на фактическом материале.

Пройдем мимо тех беспредельно давних времен, когда земной шар медленно стыл, окутанный тучами и налитый до краев горячим соляным бульоном океанов. В их водах повсюду бродили всяческие молекулы и их обломки, сталкиваясь между собою, соединяясь во всевозможных комбинациях и разъединяясь вновь. Молодая земная химия как будто пробовала свои силы: раньше, пока Земля еще была раскалена, какие бы то ни были химические соединения были так же невозможны на ней, как в электрической печи.
И вот где-то, в каком-то пункте великого океана Земли, может быть, даже всего один-единственный раз за все время ее существования, столкновение обломков создало длинную цепочечную молекулу, коренным образом не похожую на все, что образовывалось до этих пор. Пусть образование подобной молекулы было так же маловероятно, как то, чтобы карты тасуемой колоды сто раз подряд расположились в правильном порядке, — времени и места для перепробования разных комбинаций было достаточно.
Эта удивительная молекула впервые на Земле оказалась более устойчивой, чем остальные молекулы. Она не только имела свойство ограждать себя от распада благодаря особым соотношениям и формам связи своих частей. Она обнаружила свойство содействовать образованию около себя новых молекул, во всем подобных ей самой. От одного ее присутствия другие химические обломки, содержавшие, как и она сама, углерод, кислород, водород и азот, временно соединяясь с нею, проходя сквозь ее химическое нутро, сами сцеплялись в такие же точно новые молекулы. Если бы мы жили в то время, мы, может быть, назвали бы ее «молекула-самоумножитель».
Так возникли на Земле понятия самосохранения и размножения и появилась первая живая частица. Раз случайно возникнув в водах юной Земли, она уже не могла исчезнуть.
Пройдем мимо бесчисленных веков, потраченных неопытной Землей на развитие одноклеточных или простейших животных (инфузорий, корненожек, парамеций), у которых единственная их клетка сама пробивала себе дорогу в жизнь, шевеля своими жгутиками или ложноножками и работая «за одну» в отношении и питания, и движения, и самосохранения, и размножения. Поворачиваем установочный винт нашей исторической подзорной трубы на пару миллионов столетий вперед, к многоклеточным организмам, сформировавшимся за эти 3 — 4 «года» нашего условного масштаба времени.
У организма, состоящего из многих тысяч клеток, эти клетки уже потому не могут остаться равными друг другу, что одни из них находятся в глубинах тела, а другие — на поверхности. Мы присутствуем при специализации клеток: одни, лежащие на покровах тела, приспосабливаются к несению службы раздражимости и чувствительности, другие, глубинные, — преимущественно к изменениям формы, к сократителъности, к обеспечению первобытных движений. Будем называть первые рецептивными, вторые контрактилъными элементами тела.
Перед нами во все еще теплых водах первобытного океана — одни только представители 2-го и 3-го классов нашей таблички (стр. 64): полурастения-полуживотные с медленными, неохотными движениями, как движения потягивающегося после сна. По-видимому, первые движения были самопроизвольными, исходившими из самых клеток-мышц: движения ни на что не нацеленные, развившиеся просто потому, что шевелившиеся особи имели лучшие шансы в борьбе за жизнь, чем совершенно неподвижные.
Каждый физиологический процесс связан с какими-нибудь химическими превращениями в клетке. Рецептивные клетки поверхности тела, приобретшие повышенную раздражимость и взявшие на себя обслуживание чувствительности, тоже выделяли из себя во время своей деятельности — во время воздействия на них внешних раздражений, толчков, тепла или холода и т. п. — какие-то химические продукты обмена веществ. Случалось так, что эти продукты, выделяясь из рецептивных клеток и блуждая вместе с общим потоком внутренностной жидкости по межтканевым щелям тела, попадали и в окрестности контрактильных, мышечных клеток. Понятно, что те особи, у которых, может быть чисто случайно, мышечные клетки оказались возбудимыми от действия проникавших в них рецептивных веществ (назовем их пока так), получили серьезное, почти решающее, биологическое преимущество перед другими. В то время, как эти последние были способны только на самопроизвольные шевеления, иногда бывшие просто ни к чему, а иногда бывшие и прямо невпопад, особи новой «марки» могли реагировать на внешние раздражения (например, поворачиваться лицом к добыче или спиной к опасности). Это новое явление на Земле — реактивность — по началу было огульным, неизбирательным, расплывчатым, как говорят в физиологии, диффузным. Мы и сейчас можем наблюдать у различных низших организмов подобную диффузную раздражимость и реактивность: пока не трогаешь его, он лежит смирно; прикоснешься — начинаются общие неупорядоченные движения тела, тем более значительные, чем сильнее было раздражение.
Так выявились первые в природе химические возбуждающие мышцу вещества — первобытные посредники между рецептивной поверхностью тела и мышцами. Эти вещества так и называются в физиологии посредниками — медиаторами по-латыни, и, как увидим позже, они и по сию пору у самых высших организмов, и у вас, читатель, и у меня, играют очень существенную роль в наших движениях. Каждый раз, как мы при ходьбе, выполнении гимнастических упражнений произвольно напрягаем ту или иную мышцу, у ее нервных окончаний выделяется микроскопически малая капелька вещества, которому 500 миллионов лет.
В последующих поколениях организмов начали мало-помалу обособляться каналы, специально приспособленные для доставки химических медиаторов. Однако не успели еще эти «водные пути сообщения» как следует оформиться и обеспечить хоть какую-то избирательную заадресовку медиаторов к тем или иным мышечным группам, произошло другое событие, биологическое значение которого оказалось неизмеримо большим.
Зарождение нервной системы
Каждое химическое явление имеет свой электрический «отблеск», сопровождается теми или иными колебаниями электрического потенциала. Ведь мы знаем, что само химическое сродство (например, стремление кислоты соединиться со щелочью или фосфора — с кислородом) имеет электрическую природу. В своей основе это есть общеизвестное из физики взаимное притяжение разноименных электрических зарядов. Не могли обойтись без такой электрической подкладки и явления медиаторного возбуждения. Туг и возбуждение рецептивных элементов, и действие медиатора на мышечные клетки, и само ответное сокращение этих клеток сопровождались изначала легкими, паутинными колебаниями электрического заряда, из всей нашей современной электротехники больше всего похожими по величине на колебания зарядов в антенне радиоприемника при приеме сигналов откуда-нибудь из Новой Зеландии.
И здесь, где нам впервые по ходу рассказа встречаются биоэлектрические явления, т. е. проявления электричества в жизненных процессах, введем сразу удобный масштаб для ясного представления о их действительных величинах. Только в данном случае, обратно с масштабом времени, нам придется применить сильные увеличения; недаром и в лабораториях для регистрации этих явлений пользуются мощными радиоусилителями.

Сопоставление масштабов, создающее представление о действительных значениях электрических напряжений в нервах и мышцах. Условный масштаб 65 метров — 1 вольт. В этом масштабе Эверест соответствует 120-вольто-вому напряжению осветительной сети, Эйфе-левая башня — напряжению сухой батарейки карманного фонаря, кривая под циферблатом карманных часов — колебаниям напряжения в передающем возбуждение нервном волокне человека
В предлагаемом нами масштабе один вольт изобразится высотою в 65 метров (это приблизительно высота гостиницы «Москва» в нашей столице). Напряжение сухой батарейки для карманных фонариков равно в этом масштабе высоте Эйфелевой башни в Париже, напряжение нашей 120-вольтовой осветительной сети — высоте короля гор земного шара, Эвереста.
Так вот, в этом масштабе колебание потенциала при работе нашей произвольной скелетной мускулатуры равно нескольким сантиметрам, а колебание потенциала в мышцах тех низших животных, о которых сейчас идет речь, и в нервных клеточках головного мозга человека — не больше буквы шрифта, которым напечатана эта книга (примерно так, как оно изображено на нашем рисунке). Биотоки, бегущие по нашим нервам, так же относятся к напряжению, способному засветить лампочку карманного фонарика, как бугорки на озябшей, «гусиной», коже — к башне Эйфеля. Надеемся, что такие сопоставления помогут читателю что-то себе представить.
Значение этого, по началу совершенно побочного, факта огромно, и мы постараемся его объяснить. В последний раз сформулируем подробно, как именно подействовал здесь всеобщий великий принцип развития в природе — естественный отбор наиболее приспособленных экземпляров. В дальнейшем мы будем еще не один раз встречаться с ним в той же самой форме; вынесем его «за скобки» так, как в математике выносят за скобки общий сомножитель, относящийся в одинаковой мере ко всем последующим членам математической формулы, и будем потом ради краткости уже просто ссылаться на него.
Итак, получилось (в порядке случайных прирожденных изменений, всегда бывающих в известных пределах у различных особей), что у некоторых экземпляров их мышечные клетки оказались возбудимыми не только от прямого химического воздействия медиатора, но уже и от одного только электрического спутника последнего — от того неуловимо малого электрического колебания, которым он всегда сопровождался. Легко понять, какие большие преимущества в борьбе за существование получили эти экземпляры с «электровозбудимыми» мышцами перед своими не столь чуткими собратьями. Во-первых, волна электрического импульса имеет гораздо большую скорость, нежели раствор, медленно сочащийся по межтканевым щелям, — значит, она дает возможность ее обладателю реагировать во много раз быстрее. Во-вторых, электрический возбуждающий импульс несет в себе хоть какие-то возможности для его заадресовки в ту или другую мышечную группу, в то время как жидкость, содержащая медиатор, обязательно омывает весь организм. Неудивительно, что вновь открытый природой электрический, так сказать — телеграфный, принцип передачи возбудительных импульсов начал энергично завоевывать себе командное положение. Особи, почему-либо обделенные им, слишком уж быстро гибли, оставляя чересчур слабое потомство, чтобы соперничать с более совершенными формами.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39