А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Поскольку ни одна из теорий не может объяснить то, что по своей природе бесконечно, Бом заключил, что для научного поиска было бы лучше, если бы ученые отказались от подобных допущений.

В своей книге он указывал, что причинность, трактуемая наукой, слишком ограничена. Большинство следствий рассматривались как происходящие по одной или нескольким причинам. Бом, однако, почувствовал, что следствие может иметь за собой бесконечное множество причин. Например, если вы спросите, что вызвало смерть Авраама Линкольна, вам ответят, что это была пуля, вылетевшая из револьвера Джона Бута. Но полный список причин, за которыми последовала смерть Линкольна, должен был бы включать все события, приведшие к производству данного ружья, все факторы, заставившие Бута желать смерти Линкольна, все шаги эволюционного развития человеческой расы и руки, способной удержать револьвер, и т.д. и т. п. Бом признавал, что в большинстве случаев можно игнорировать огромную вереницу причин, приводящих к конкретному следствию, но считал, что ученым очень важно помнить: ни одно из причинно-следственных отношений нельзя в действительности отделить от вселенной.


Если хочешь узнать о себе, спроси других


В это же время Бом продолжал шлифовать свой альтернативный подход к квантовой физике. Пристальное изучение свойств квантового потенциала привело его к еще более радикальному отходу от ортодоксального мышления. Классическая наука всегда рассматривала систему как простое сложение поведения ее отдельных частей. Однако гипотеза квантового потенциала, образно говоря, поставила эту точку зрения с ног на голову, определив поведение частей как производную от целого. Она не только включила в себя утверждение Бора о том, что элементарные частицы не являются независимыми «частицами материи», а представляют собой часть неделимого целого, но и постулировала целое как первичную реальность.

Эта гипотеза также объясняла, каким образом электроны в плазме (и других особых состояниях, таких как сверхпроводимость) могли вести себя как единое целое. Как указывает Бом, такие «электроны не рассеиваются, потому как благодаря действию квантового потенциала вся система приобретает координированное движение — это можно сравнить с балетом, в котором танцоры движутся синхронно в отличие от неорганизованной толпы». И он снова отмечает: «Такие квантовые целые состояния больше напоминают организованное поведение частей живого существа, чем функционирование отдельных частей машины» [6].

Еще более удивительное свойство квантового потенциала заключается в его связи с локализацией. На уровне нашего обычного опыта вещи обладают вполне конкретной локализацией, однако, в интерпретации Бома, на субквантовом уровне, то есть уровне, на котором работает квантовый потенциал, локализация отсутствует. Все точки пространства становятся едиными, и говорить о пространственном разделении становится бессмысленным. Физики называют такое свойство пространства «нелокальностью».

Нелокальный аспект квантового потенциала позволил Бому объяснить связь между парными частицами без нарушения специальной теории относительности, запрещающей превышение скорости света. Для пояснения он предлагает следующий пример: Представьте себе рыбу, плавающую в аквариуме. Представьте также, что вы никогда раньше не видели рыбу или аквариум и что единственную информацию о них вы получаете через две телевизионные камеры, одна из которых направлена на торец аквариума, а другая смотрит сбоку. Если смотреть на два телевизионных экрана, можно ошибочно предположить, что рыбы на экранах разные. Действительно, поскольку камеры расположены под разными углами, каждое из изображений будет несколько отличаться. Но, продолжая наблюдать за рыбами, вы в конце концов понимаете, что между ними существует некая связь. Если поворачивается одна рыба, другая делает несколько другой, но синхронный поворот. Если одна рыба показывается анфас, другая предстает в профиль, и т.д. Если вы не знакомы с общей ситуацией, вы можете ошибочно заключить, что рыбы мгновенно координируют свои движения, однако это не так. Никакой мгновенной связи между ними нет, поскольку на более глубоком уровне реальности — реальности аквариума — существует одна, а не две рыбы. Именно это, отмечает Бом, и происходит с частицами, например с двумя фотонами, испускаемыми при распаде атома позитрония (см. рис. 8).


Рис. 8. Бом считает, что элементарные частицы связаны также, как изображения одной рыбы в двух гранях аквариума. Хотя частицы, наподобие электронов, кажутся отделенными друг от друга, на более глубоком уровне реальности — реальности аквариума — они являются лишь двумя аспектами глубокого космического единства.


Действительно, поскольку квантовый потенциал пронизывает все пространство, все частицы имеют нелокальную взаимосвязь. Картина реальности, которую раскрывал Бом, все более становилась похожа не на отдельное существование разрозненных элементарных частиц, движущихся в вакууме, но на непрерывную паутину событий, уложенных в пространство, которое само обладает такой же реальностью и разнообразием, как и материя, движущаяся сквозь него.

Идеи Бома по-прежнему не были убедительны для большинства ученых, но у некоторых физиков они вызывали интерес. Одним из таких физиков был Джон Стюарт Белл, теоретик из CERN'a — Центра ядерных исследований, расположенного близ Женевы, в Швейцарии. Как и Бом, Белл также был неудовлетворен квантовой теорией и искал ей альтернативу. Позднее он вспоминал: «В 1952 г. я увидел статью Бома. В ней он предлагал ввести некоторые переменные, чтобы дополнить квантовую механику. Это было впечатляюще» [7].

Белл также понял, что теория Бома предполагает наличие нелокальности, и начал думать о ее экспериментальной проверке. Эта проблема долго оставалась у него в уме, пока в 1964 году он не получил годичный отпуск для научной работы и не смог сконцентрироваться на этой идее. Затем он быстро нашел элегантное математическое обоснование эксперимента. Единственной проблемой было ограничение точности, обусловленное тогдашним развитием техники. Чтобы убедиться в том, что частицы, например в случае EPR-парадокса, не используют обычной связи, основные экспериментальные измерения должны были производиться за такой бесконечно малый промежуток, за который луч света не успевал бы пройти расстояние между частицами. Это означало, что измерительные приборы должны были производить необходимые отсчеты в течение нескольких миллиардных долей секунды.


Голограмма появляется на свет


К концу 1950-х годов Бом уже достаточно настрадался от маккартизма и решил перебраться в Англию, в Бристольский университет, где стал вести научную работу. Там вместе с молодым исследователем Якиром Аароновым он обнаружил еще один пример нелокального взаимодействия. Бом и Ааронов установили, что при определенных обстоятельствах электрон может «почувствовать» присутствие магнитного поля в области, где вероятность нахождения электрона равна нулю. Это явление известно сегодня под именем эффекта Ааронова-Бома. Когда исследователи опубликовали свое открытие, многие физики не поверили, что такой эффект возможен. Даже сегодня находятся скептики, которые, несмотря на многочисленные подтверждающие эксперименты, время от времени публикуют статьи, отрицающие существование данного эффекта.

Как всегда, Бом стоически продолжал сопротивляться, смело заявляя толпе, что «король голый». В интервью несколько лет спустя он подчеркнул значение бескомпромиссности: «На большом отрезке времени оказывается гораздо более опасным придерживаться иллюзий, чем встретиться лицом к лицу с истинными фактами» [8].

Тем не менее сдержанная реакция на его идеи относительно полноты и нелокальности, а также неясность дальнейших исследований в этом направлении заставили его переключиться на другие темы. В 1960-х годах он занялся пристальным изучением порядка. В классической науке все объекты обычно разделялись на две категории: объекты, обладающие упорядоченностью своих частей, и объекты, части которых находятся в неупорядоченном, или случайном состоянии. Снежинки, компьютеры и живые существа — все это примеры упорядоченных объектов. Рассыпанные зерна кофе на полу, обломки после взрыва, числа, генерируемые рулеткой, — примеры неупорядоченных объектов.

По мере того как Бом все более углублялся в изучаемый предмет, он стал понимать, что существуют различные степени порядка. Некоторые вещи более упорядоченны, чем другие, причем иерархия порядка бесконечна во вселенной. Из этого Бом сделал вывод, что то, что нам кажется неупорядоченным, вовсе может и не являться таковым. Возможно, порядок этих вещей имеет «такую бесконечно большую величину», что они только кажутся беспорядочными (интересно, что математики не могут определить случайность, и хотя некоторые последовательности чисел классифицируются как случайные, это только допущение).

Будучи погруженным в эти мысли, Бом увидел как-то в телевизионной программе Би-Би-Си устройство, способствовавшее дальнейшему развитию его идей. Устройство представляло собой специально спроектированный сосуд, содержащий большой вращающийся цилиндр. Пространство сосуда было заполнено глицерином — плотной, прозрачной жидкостью — с неподвижно плавающей в нем каплей чернил. Бома заинтересовало следующее. Когда ручку цилиндра поворачивали, чернильная капля расползалась по глицерину и казалась растворенной. Но как только ручку начинали крутить в противоположном направлении, слабая чернильная траектория медленно исчезала и превращалась в исходную каплю (см. рис. 9).


Рис. 9. Если каплю чернил поместить в цилиндрический сосуд, наполненный глицерином, а сам цилиндр повернуть вокруг оси, капля расползается и исчезает. Но если цилиндр повернуть в обратном направлении, капля снова восстанавливается. Бом использовал это явление как пример порядка, который может быть проявленным (явным) или скрытым (имплицитным).


Бом писал: «Этот опыт поразил меня тем, что в точности соответствовал моим представлениям о порядке, то есть когда чернильное пятно расползалось, оно все-таки имело «скрытый» (то есть непроявленный) порядок, который проявлялся, как только капля восстанавливалась. С другой стороны, на нашем обычном языке мы сказали бы, что чернила были в состоянии «беспорядка», растворившись в глицерине. Этот опыт привел меня к новому определению порядка» [9].

Это открытие сильно воодушевило Бома. Наконец он нашел метафору для понимания порядка, которая позволила не только свести воедино все его разрозненные мысли за многие годы, но и предоставила мощный аналитический аппарат в его распоряжение. Этой метафорой была голограмма.

Как только Бом начал внимательно изучать голограмму, он увидел, что она тоже представляла собой новый способ объяснения порядка. Как и чернильная капля в растворенном состоянии, интерференционные картины, записанные на кусочке голографической пленки, также казались хаотичными для невооруженного глаза. Однако оба явления обладают скрытым, или свернутым порядком, напоминающим порядок плазмы, состоящей из кажущегося случайным индивидуального поведения электронов. И это не было единственной блестящей догадкой, полученной с помощью голограммы.

Чем больше Бом думал об этом феномене, тем более он убеждался в том, что вселенная фактически использует голографический принцип в своей работе, да и сама представляет своего рода огромную, плавающую голограмму. Эта идея в конце концов позволила Бому выкристаллизовать различные догадки в целостную и поражающую своим радикализмом теорию. Свои первые статьи о голографическом характере вселенной Бом опубликовал в начале 1970-х годов, а в 1980 году издал законченный труд под названием «Полнота и импликативный порядок». Книга не просто соединяет воедино мириады идей, она дает столь радикально новую картину мироздания, что дух захватывает.


Скрытый порядок и раскрытая реальность


Одно из самых революционных предположений Бома заключается в том, что наша осязаемая повседневная реальность на самом деле — всего лишь иллюзия, наподобие голографического изображения. Под ней находится более глубокий порядок бытия — беспредельный и изначальный уровень реальности, — из которого рождаются все объекты и, в том числе, видимость нашего физического мира аналогично тому, как из кусочка голографической пленки рождается голограмма. Бом называет этот глубинный уровень реальности импликативным (то есть «скрытым») порядком, в то время как наш собственный уровень существования он определяет как экспликативный, или раскрытый порядок.

Бом использует эти термины потому, что видит проявление всех форм во вселенной как результат бесконечного процесса свертывания и развертывания между двумя порядками. Например, Бом считает, что электрон — это не отдельный объект, а полнота (totality), или множество, возникшее в результате свертывания пространства. Когда прибор определяет присутствие отдельного электрона, это происходит потому, что в данный момент проявляется только один аспект электронного множества, аналогично тому, как чернильная капля обнаруживается из глицеринового пятна. Если электрон кажется движущимся, это вызвано непрерывной серией таких свертываний и развертываний.

Другими словами, электроны и все другие частицы — не более материальны и постоянны, чем форма, принимаемая гейзером, когда он фонтанирует из земли. Они поддерживаются непрерывным притоком из импликативного порядка, и когда частица предстает перед нами как распадающаяся, на самом деле она никуда не девается. Она просто свертывается обратно в глубинный порядок, откуда произошла. Кусочек голографической пленки и ее изображение являются таким же примером существования импликативного и экспликативного порядка. Пленка содержит импликативный порядок, потому как изображение, закодированное в интерференционных паттернах, — это скрытая полнота, свернутая в пространстве. Голограмма, проецируемая пленкой, имеет экспликативный порядок, поскольку представляет развернутую и видимую версию изображения.

Постоянный и динамический обмен между двумя порядками объясняет, как частицы, такие как электрон в атоме позитрония, могут превращаться из одного типа в другой. Такие превращения можно рассматривать как свертывание, скажем, электрона обратно в импликативный порядок и развертывание фотона на его месте. Это также объясняет, каким образом квант может проявляться в виде либо частицы, либо волны. Согласно Бому, оба аспекта всегда присутствуют в свернутом виде во всем множестве кванта, но способ взаимодействия наблюдателя с этим множеством определяет, какой аспект проявится, а какой останется скрытым. По сути, роль, которую играет наблюдатель в определении формы кванта, оказывается не более загадочной, чем приемы ювелира, открывающего ту или иную грань драгоценного камня. Поскольку термин «голограмма» обычно относится к статичному изображению и не передает динамику и активный характер бесконечных свертываний и развертываний, непрерывно создающих нашу вселенную, Бом предпочитает определять вселенную не как голограмму, а как «голодинамику» (holomovement).

Существование более глубокого и голографически организованного порядка также объясняет, почему реальность становится нелокальной на внутриатомном уровне. Как мы уже видели, при голографической организации реальности локальность пропадает. Если мы говорим, что каждая часть голографической пленки содержит всю полноту информации, то это все равно что утверждать: информация распределена нелокально. Следовательно, если вселенная организована в соответствии с голографическим принципом, она также должна иметь нелокальные свойства.


Неделимая полнота вещей


Наиболее захватывающим является развитие Бомом идей о полноте, или целостности (wholeness). Поскольку все в космосе состоит из непрерывной голографической ткани, пропитанной импликативным порядком, бессмысленно, согласно Бому, говорить о вселенной, состоящей из «частей»; так же бессмысленно было бы говорить о независимо существующих формах гейзера, выходящих из одной скважины. Электрон более не является «элементарной частицей». Это просто имя, присвоенное некоторому аспекту голодинамики. Разделение реальности на части и затем присвоение имен этим частям всегда произвольно, всегда условно, поскольку элементарные частицы, как и все во вселенной, существуют не более независимо друг от друга, чем элементы орнамента на ковре.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44