А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

8). Волны сжатия в жидкости возникают
также при различного рода врывных явлениях в движущейся или
покоящейся жидкости (глубинные бомбы).
Патент США N 3118417: Способ укрепления морского якоря
заключается в следующем. Подвижной якорь опускают в воду над
тем местом, где он должен быть поставлен. Поток воду через
расположенную над якорем колонну поступает в ограниченную по-
лость где давление меньше давления жидкости в колонне и в ок-
ружающей среде. Резко остановленный поток воды передает гид-
равлический удар на якорь, что обеспечивает введение
последнего в грунт.
А.с. N 269045: Способ повышения динамической устойчивости
энергосистемы при аварии на линии электропередач путем сниже-
ния мощности гидротурбины, отличающийся тем, что с целью
уменьшения напора перед гидротурбиной создают отрица гидравли-
ческий удар путем отвода части потока, например в резервуаре.
А.с. N 348806: Способ размерной электрохимической обра-
ботки с регулированием рабочего зазора путем переодического
соприкосновения электродов с последующим отводом электрода -
инструмента на заданную величину, отличающийся тем, что для
отвоинструмента используют силу гидравлического удара, возни-
кающего в электролите, подаваемом в рабочий зазор.
4.7.1. Электро - гидравлический удар.
Волну сжатия в жидкости можно вызвать также мощным им-
пульсным электрическим разрядом между электродами, помещенными
в жидкость (электрогидравлический эффект Юткина). Чем круче
фронт электрического импульса, чем менее сжатая жидкость, тем
выше давление в ударе и тем "бризантнее" электрогидравлический
. Электрогидравлический удар применяется при холодной обработ-
ке металлов, приразрушении горных пород, для диамульсации жид-
костей, интенсификации химических реакций и т.д.
Патент США N 3566447: Формирование пластических тел при
помощи гидравлического удара высокой энергии. Патентуется гид-
раввлическая система в которой столб жидкости, находящийся в
баке гидропушки, напрвляется на заготовку. Для проведения жид-
кости в движение в указанном столбе жидкости производят элект-
рический разряд, в результате чего генерируется направленная
на заготовку волна, которая в сочетании с собственным высоким
давлением жидкости осуществляет деформацию заготовки. Скорость
струи напрвляемой на заготовку, составляет от 100 до 10000
м/с.
В США эффект Юткина применяют для очистки электродов от
налипшего на них при электролизе металлов, а в Польше - для
упрочения стальных колец турбогенераторов. При этом стоимость
операций, как правило, снижается.
А.с. N 117562: Способ получения коллоидов металлов и уст-
ройство для осуществления при применении высокого напряжения
за счет электрогидравлического удара между микрочастицами ма-
териала, диспергированного в жидкости.
Ударная волна возникающая в воде при быстром испарении
металлических стержней электрическим током (см. ниже А.с. N
129945) вполне пригодна для разрушения валунов и других креп-
ких материалов, для разбивки бетонных фундаментов, зачистки
окальных оснований гидротехнических сооружений и других работ
связанных с разрушением. Приведенные примеры иллюстрируют при-
менение эффекта. Ниже даны примеры того, каким способом можно
получить или усилить электрогидравлический удар.
В японском патенте N 13120 (1965) описан способ электро-
гидравлической формовки ртутно-серебрянными электродами. При
парименении таких электродов сила ударной волны в воде возрас-
тает, так как к давлению плотной плазмы, образующейся в канале
разряда прибавляется давление паров ртути. Применение этого
способа позволяет заметно уменьшить емкость конденсаторной ба-
тареи.
А.с. N 119074: Устройство для получения свервысоких гид-
равлических давлений предназначенное для осуществления способа
по А.с. N 105011, выполненное ввиде цилиндрической камеры, со-
общенной одним концом с трубопроводом, подающим жидкость, а
другим - с ресивером, отличающееся тем, что с целью создания
электрогидравлических степеней сжатия применены искровые про-
межутки, располагаемы по длине камеры на определенном расстоя-
нии друг от друга.
А.с. N 129945: Способ получения высоких и сверхвысоких
давлений для создания электрогидравлических ударов, отличаю-
щийся тем, что высокие и сверхвысокие давления в жидкости по-
лучают путем испарения в ней действием эмульсного заряда то-
копроводящих элементов в виде проволоки, ленты или трубки,
замыкающих электроды.
4.7.2. С в е т о г и д р а в л и ч е с к и й удар.
Советские физики (А.М.Прохоров, Г.А.Аскарьян и Г.П.Шапи-
ро) установили, что мощные гидравлические волны можно получить
используя луч квантового генератора (открытие N65). Если луч
мощного квантового генератора пропустить через жидкость, то
вся энергия луча поглотится в жидкости, приводя к образованию
ударных волн с давлением, доходящим до миллиона атмосфер. Это
открытие находит, кроме обычных областей применения гидравли-
ческих ударов, очень широкое применение микроэлектронике, для
условий особо чистых поверхностей, для обработки таких матери-
алов и изделий, которые исключают пр электродов и т.д. Исполь-
зуя светогидравлический эффект, можно издалека, дистанционно,
возбуждать в жидкости гидравлические импульсы с помощью луча
света (см. также 17.7).
4.8. K а в и т а ц и я.
Кавитацией называется образование разрывов сплошности
жидкости в результате местного понижения давления. Если пони-
жение давления происходит вследствии возникновения больших
местных скоростей в потоке движущейся капельной жидкости, то
кавитация называется гидродинамической, а если вследствие про-
хождения в жидкости акустических волн, то акустической.
4.8.1. Гидродинамическая кавитация
Возникает в тех участках потока, где давление понижается
до некоторого критического значения. Присутствующие в жидкости
пузырьки газа или пара, двигаясь с потоком жидкости и попадая
в облать давления меньше критического, приобретает способность
к неограниченному росту. После перехода в зону пониженного
давления рост прекращается и пузырьки начинают уменьшаться.
Если пузырьки содержат достаточно много газа, то при достиже-
нии ими минимального радиуса, они восстанавливаются и соверша-
ют несколько циклов затухающих колебаний, а если мало, то пу-
зырек схлопывается полностью в первом цикле.
Таким образом, вблизи обтекаемого тела создается
кавитационная зона, заполненная движущимися пузырьками. Сокра-
щение кавитационного пузырька происходит с большой скоростью и
сопровождается звуковым импульсом, тем более сильным, чем
меньше газа содержит пузырек. Если степень развития кавитации
такова, что возникает и захлопывается множество пузырьков, то
явление сопровождается сильным шумом со сплошным спетром от
несколько сотен герц до сотен кгц. Спектр расширяется в об-
ласть низких частот по мере увеличения максимального радиуса
пузырьков.
Если бы жидкость была идиально однороной, а поверхность
твердого тела, с которым она граничит идеально смачисваемой,
то разрыв происходил бы при давлении более низком, чем давле-
ние насыщенного паражидкости, при котором жидкость становится
нестабильной. Теоретическая прочность воды на разрыв равна
1500 кг/см. реальные жидкости менее прочны. Максимальная проч-
ность на разрыв тщательно очищенной воды, достигнутая при рас-
тяжении воды при 10 град. составляет 260 кг/см. Обычно же раз-
рыв наступает при давлениях, насыщенного пара. низкая
прочность реальных жидкостей связана с наличием в них так на-
зываемых кавитационных зародышей - плохо смачиваемых участков
твердого тела, твердых частиц, частиц, заполненных газом мик-
роскопических газовы предохраняемых от растворения мономолеку-
лярными органическими оболочками, ионных образований, возника-
ющих под действием космических лучей.

Увеличение скорости потока после начала кавитаци влечет
за собой быстрое возрастание числа развивающихся пузырьков,
вслед за чем происходит их обьединение в общую кавитациверну и
течение переходит в струйное.

Для плохо обтекаемых тел, обладающих острыми кромками,
формирование струйного вида кавитации происходит очень быстро.
наличие кавитации неблагоприятно сказывается на работе гидрав-
лических машин, турбин, насосов, судовых гребных винтов и зас-
тавляет принимать меры к избежанию кавитации. Если это оказы-
вается невозможным, то в некоторых случаях полезно усилить
развитие кавитации, создать так называемый режим "суеркавита-
ции", отличающийся струйным характером обтекания и применив
специальное профилирование лопастей, обеспечить благоприятные
условия работы механизмов. Замыкание кавитационных пузырьков
вблизи поверхности обтекаемого тела часто приводит к разруше-
нию поверхности,- так называемой кавитационной эрозии. Чтобы
избежать захлопывание кавитационных пузырьков, надо подать в
область пониженного давления какой-нибудь газ, например воз-
дух.
Так сделали специалисты Гидропроекта. Они построили на
водосбросе Нурекской плотины в области максимальной кавитации
искуственный трамплин, создав тем самым большую зону понижен-
ного давления, которую соединили с атмосферой. Теперь кавита-
ция засасывала воздух из атмосферы и сама себя разрушила.
Очень часто используют происходящие при кавитации разруше-
ния для ускорения различных технологических процессов.
А.с. N 443663: Способ приготовления грубых кормов, включаю-
щий обработку их раствором щелочи, отличающийся тем, что с
целью размягчения и ускорения влагонасыщения корма, обработку
его осуществляют в кавитационном режиме.
4.8.2. Акустическая кавитация.
Это образование и захлопывание полостей и жидкости под воз-
действием звука. Полости образуются в результате разрыва жид-
кости во время полупериодов сжатия. Полости заполнены в основ-
ном насыщенным паром данной жидкости, поэтому процесс иногда
называется паровой кавитацией в отличие от газовой кавитаци-
иинтенсивных нелинейных колебаний газовых (обычно воздушных)
пузырьков в звуковом поле, существовавших в жидкости до вклю-
чения звука. Если газовая кавитация может протекать с большей
или меньшей интенсивностью при любых значениях амплитуды дав-
ления звуковой волны, то паровая лишь при достижении некоторо-
го критического значения амплитуды давления, так называемого
кавитационного порога. Величина этого порога - от давленияна-
сыщенного пара жидкости до нескольких десятков и даже сотен
атмосфер (в зависимости от содержания в жидкости зародышей).
Эксперементально установлено, что величина порога завист от
многих факторов. Порог повышается с ростом гидростатического
давления, после обжатия жидкости высоким (порядка 1000 атм.)
статистическим давлением,при обезгаживании и охлаждении жид-
кости, с ростом частоты звука и с уменьшением продолжительнос-
ти озвучивания. Порог выше для бегущей, чем для стоячей воды.

При захлопывании сферической полости давление в ней резко
возрастает, как при взрыве, что приводит к излучению импульса
сжатия. Давление при захлопывании особенно велико при кавита-
ции на низких частотах в обезгаженной жидкости с малым давлен
насыщенного пара. Если увеличить содержание газа в жидкости,
то диффузия газа в полости усилится, захлопывание полостей
станет неполным и подьем давления при захлопывании - неболь-
шим. При содержании газа в жидкости выше 50% от насыщения воз-
никает кавитационное обезгаживание жидкости - образование и
всплывание газовых пузырьков и вырождение паровой кавитации в
газовую. Если образовавшиеся паровые пузырьки колеблются вбли-
зи границы с твердым телом, около них возникают интенсивные
микропотоки. Появление кавитации ограничивает дальнейшее повы-
шение интенсивности звука, излучаемого в жидкости, что влечет
за собой снижение нагрузки на излучатель.

Акустическая кавитация вызывает ряд эффектов. часть из них,
например, разрушение и диспергирование твердых тел, эмульгиро-
вание жидкостей, очистка - обязаны своим происхождением ударам
при захлопывании полостей и микропотокам вблизи пузырьков.
Другие эффекты (например, вызывает и ускоряет химические реак-
ции) связаны с ионизацией при образовании полостей. Благодаря
этим эффектам акустическая кавитация находит все более широкое
применение для создания новых и совершенствования известных
технологических процессов. Большинство практических применений
ультразвука основано на эффекте кавитации.
В А.с. 200981 описывается установка, использующая в своей
работе явление кавитации. Назначение установки - снятие зау-
сенцев с деталей самой различной формы. Деталь помещается в
жидкость под высоким давлением, насыщенную мельчайшими абра-
зивными частицами. При возбуждении в жидкости интенсивной
акустической кавитации заусеницы отделяются от деталей; вдоба-
вок деталь очищается от стружки и масла не только на открытых
поверхностях, но и глубоких отверстиях.
А.с. 285394: Способ создания кавитации в жидкости путем
возбуждения непрерывных колебаний звуковой или ультразвуковой
частоты, отличающийся тем, что с целью поваышения эрозионной
активности жидкости возбуждают в полупериод сжатия дополни-
тельный пиковый импульс сжатия, соответствующий по времени
концу фазы расширения или началу фазы захлопывания кавитацион-
ных полостей.
А.с. 409569: Способ детектирования радиоактивных излучений
по их воздействию на протекание акустической кавитации в жид-
котях, отличающийся тем, что с целью увеличения надежности де-
тектирования, в кавитирующее акустическое поле помещают
тест-образец, определяют степень его эрозии, по изменению ко-
торой судят об интенсивности радиоактивного излучения.
А.с. 446757: Способ получения теплофизической метки, напри-
мер, для измерения расхода путем воздействия излучением на ис-
следуемый поток, отличающийся тем, что с целью расширения диа-
пазона измеряемых сред, воздействуют на контролируемый поток
ультразвуковым полем с интенсивностью выше порога кавитации,
фокусируют звуковые волны в локальную область, создают крат-
ковременный процесс кавитации и получают теплофизическую неод-
нородность за счет продуктов кавитации.
4.8.3. Сонолюминисценция.
В момент захлопывания кавитационного пузырька наблюдается
его слабое свечение, причиной этого явления является нагрева-
ние газа в пузырьке, обусловленное высокими давлениями при его
схлопывании. Вспышка может длиться от 1/20 до 1/1000 сек. Ин-
тенсивность света зависит от колличесва газа в пузырьке: если
газ в пузыорьке отсутствует, то свечение не возникает. Свето-
вое излучения пузырька очень слабо и становится видимым при
усилении или в полной темноте.

Л И Т Е Р А Т У Р А

К 4.1. М.И.Шлионис, Магнитные жидкости. УФН. 1974, т.112.
авп. 3, стр.427
Н.З.Френкель, Гидравлика, М.-Л, 1956.
М.Д.Чертоусов, Гидравлика, М., 1957.
К 4.2. З.П.Шульман и др., Электрореологический эффект, Минск,
"Наука и техника", 1972.
К 4.3. И.М.Холостников, Теория сверхтекучести,
М., "Наука", 1977.
А.Роуз, Техника низкотемпературного эксперимента, М.,
"Мир", 1966.
К 4.4. Л.Лодж, Эластические жидкости, М., "Наука", 1969.
Физика ударных волн и высокотемпературных явлений,
М., 1963.
В.Н.Дмитриев, Основы пневмоавтоматики,
М., "Машиностроение", 1973.
Ю.Иванов, Была ли дырка в ванне Архимеда?
"Техника молодежи", 1972, стр.40.
А.Альтшуль и др., Визревые воронки, "Наука и жизнь",
1968, N'7.
К 4.6. М.П.Малков, Справочник по физико-химическим основам
глубокого охлаждения, М.-Л., 1963.
К 4.7. Н.Е.Жуковский, "О гидравлическом ударе в водопроводных
кранах", М.-Л., 1949.
М.А.Мостков и др., "Расчеты гидравлического удара",
М.-Л., 1952.
Г.В.Аронович и др.,"Гидравлический удар и уравнительные
резервуары", М., "Наука", 1968.
Л.А.Юткин, "Электрогидравлический эффект", М.,
"Машгиз", 1955.
К 4.8. Л.Родзинский, "Кавитация против кавитации", "Знание -
сила", N'6, 1977, с.4.
Н.А.Рой, Возникновение и протекание ультразвуковой
кавитации, Акустический журнал, 1957, вып.I.
И.Пирсол, "Кавитация", М., "Мир", 1975.
5. КОЛЕБАНИЯ И ВОЛНЫ
5.1. Механические колебания.
Колебаниями называют процессы, точно или приблизительно
повторяющиеся через одинаковые промежутки времени.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29